Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context

Abstract

The essential role of prolactin (PRL) in normal mammary gland growth and differentiation has implicated this hormone in the development and progression of breast cancer. Although Stat5 is the best-characterized mediator of PRL signals, PRL also activates multiple other signals, whose roles in normal and pathologic processes are not well understood. We have shown that PRL stimulates activating protein-1 (AP-1) activity in breast cancer cells, and can cooperate with estradiol in this pathway. AP-1 modulates many processes critical for carcinogenesis, including cell proliferation, survival, transformation, invasion and angiogenesis, and is elevated in many neoplasms, including breast tumors. Here, we investigated the relationship between PRL signals to AP-1 and Stat5. We found that PRL activation of Stat5a and Stat5b, but not Stat1 or Stat3, reduced PRL signals to AP-1, without altering estradiol-induced AP-1 activity. The truncation mutant, Stat5/Δ53C, but not Stat5Y699F, was an effective inhibitor, consistent with a requirement for Stat5 dimerization and nuclear accumulation, but not its C-terminal transactivation activity. The association of Stat5 with AP-1 proteins suggests that this underlies the inhibition. Predictably, the ability of PRL to activate Stat5 and AP-1 was inversely related in mammary cell lines. Further, reduction of Stat5 protein with siRNA in T47D cells, which contain elevated Stat5, increased PRL-induced AP-1 signals, transcripts for the AP-1 target, matrix metalloproteinase-2 and associated invasive behavior. This study points to the importance of cell context in determining the spectrum of PRL-induced actions, which is critical for understanding the contributions of PRL to breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bjornstrom L, Sjoberg M . (2002). STAT as downstream targets of nongenomic estrogen receptor actions. Mol Endocrinol 16: 2202–2214.

    Article  CAS  PubMed  Google Scholar 

  • Bland KI, Konstadoulakis MM, Vezeridis MP, Wanebo HJ . (1995). Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma. Ann Surg 221: 706–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockman JL, Schroeder MD, Schuler LA . (2002). Prolactin activates the cyclin D1 promoter via the JAK2-STAT pathway. Mol Endocrinol 16: 774–784.

    Article  CAS  PubMed  Google Scholar 

  • Bromberg J . (2002). Stat proteins and oncogenesis. J Clin Invest 109: 1139–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buettner R, Mora LB, Jove R . (2002). Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8: 945–954.

    CAS  PubMed  Google Scholar 

  • Cao JS, Wood M, Liu Y, Hoffman T, Hyde J, Park-Sarge OK et al. (2004). Estradiol represses prolactin-induced expression of Na+/taurocholate cotransporting polypeptide in liver cells through estrogen receptor-α and STAT5a. Endocrinology 145: 1739–1749.

    Article  CAS  PubMed  Google Scholar 

  • Clevenger CV, Furth PA, Hankinson SE, Schuler LA . (2003). Role of prolactin in mammary carcinoma. Endocr Rev 24: 1–27.

    Article  CAS  PubMed  Google Scholar 

  • Cotarla I, Ren SX, Zhang Y, Gehan E, Singh B, Furth PA . (2004). Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 108: 665–671.

    Article  CAS  PubMed  Google Scholar 

  • DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba MG et al. (1996). Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 117: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Faulds MH, Pettersson K, Gustafsson JA, Haldosen LA . (2001). Cross-talk between ERs and Stat5 is E2 dependent and involves two functionally separate mechanisms. Mol Endocrinol 15: 1929–1940.

    Article  CAS  PubMed  Google Scholar 

  • Gee JM, Barroso AF, Ellis IO, Robertson JF, Nicholson RI . (2000). Biological and clinical associations of c-jun activation in human breast cancer. Int J Cancer 89: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Goffin V, Bernichtein S, Touraine P, Kelly PA . (2005). Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26: 400–422.

    Article  CAS  PubMed  Google Scholar 

  • Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA . (2005). Prolactin and estrogen enhance the activity of AP-1 in breast cancer cells: role of ERK1/2-mediated signals to c-fos. Mol Endocrinol 19: 1765–1778.

    Article  CAS  PubMed  Google Scholar 

  • Gutzman JH, Rugowski DE, Schroeder MD, Watters JJ, Schuler LA . (2004). Multiple kinase cascades mediate prolactin signals to AP-1 in breast cancer cells. Mol Endocrinol 18: 3064–3075.

    Article  CAS  PubMed  Google Scholar 

  • Hennighausen L, Robinson GW . (2005). Information networks in the mammary gland. Nat Rev Mol Cell Biol 6: 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Horvai AE, Xu L, Korzus E, Brard G, Kalafus D, Mullen TM et al. (1997). Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA 94: 1074–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys RC, Hennighausen L . (1999). STAT5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ 10: 685–694.

    CAS  PubMed  Google Scholar 

  • Iavnilovitch E, Groner B, Barash I . (2002). Overexpression and forced activation of Stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Cell Growth Differ 1: 32–47.

    CAS  Google Scholar 

  • Ilaria Jr RL, Hawley RG, Van Etten RA . (1999). Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 93: 4154–4166.

    CAS  PubMed  Google Scholar 

  • Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M et al. (1999). Increased AP-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res 5: 251–256.

    CAS  PubMed  Google Scholar 

  • Keely PJ . (2001). Ras and Rho protein induction of motility and invasion in T47D breast adenocarcinoma cells. Methods Enzymol 333: 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Levy DE, Darnell Jr JE . (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662.

    Article  CAS  PubMed  Google Scholar 

  • Luo GY, Yu-Lee LY . (2000). Stat5b inhibits NFkappaB-mediated signaling. Mol Endocrinol 14: 114–123.

    CAS  PubMed  Google Scholar 

  • Milde-Langosch K, Bamberger AM, Methner C, Rieck G, Loning T . (2000). Expression of cell cycle-regulatory proteins rb, p16/MTS1, p27/KIP1, p21/WAF1, cyclin D1 and cyclin E in breast cancer: correlations with expression of AP-1 family members. Int J Cancer 87: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Milde-Langosch K, Roder H, Andritzky B, Aslan B, Hemminger G, Brinkmann A et al. (2004). The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in the invasion process of mammary carcinomas. Breast Cancer Res Treat 86: 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ouchida R, Kodama T, Kawashima T, Makino Y, Yoshikawa N et al. (2002). Cytokine receptor common beta subunit-mediated STAT5 activation confers NF-kappa B activation in murine proB cell line Ba/F3 cells. J Biol Chem 277: 6254–6265.

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J et al. (2004). Stat-5 activation and breast cancer prognosis. J Clin Oncol 22: 2053–2060.

    Article  CAS  PubMed  Google Scholar 

  • Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun JJ, Ali S . (2006). Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res 66: 1824–1832.

    Article  CAS  PubMed  Google Scholar 

  • Ormandy CJ, Horseman ND, Naylor MJ, Harris J, Robertson F, Binart N et al. (2001). Mammary gland development. Prolactin In: Horseman ND (ed). Kluwer Academic Publishers: Boston, pp. 219–232.

    Chapter  Google Scholar 

  • Ren S, Cai HR, Li M, Furth PA . (2002). Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 21: 4335–4339.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MD, Symowicz J, Schuler LA . (2002). Prolactin modulates cell cycle regulators in mammary tumor epithelial cells. Mol Endocrinol 16: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  • Shemanko CS, Groner B . (2001). Transcription factors, cofactors and target genes mediating prolactin signals. Prolactin In: Horseman ND (ed). Kluwer Academic Publishers: Boston, pp. 381–404.

    Chapter  Google Scholar 

  • Shuai K . (2000). Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19: 2638–2644.

    Article  CAS  PubMed  Google Scholar 

  • Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H . (2005). Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 24: 746–760.

    Article  CAS  PubMed  Google Scholar 

  • Tworoger SS, Hankinson SE . (2006). Prolactin and breast cancer risk. Cancer Lett 243: 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Van't Veer LJ, Dai HY, Van de Vijver MJ, He YDD, Hart AAM, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  CAS  Google Scholar 

  • Vincenti MP . (2001). The matrix metalloproteinase and tissue inhibitor of metalloproteinase genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol Biol 151: 121–148.

    CAS  PubMed  Google Scholar 

  • Vonderhaar BK . (2000). Prolactin in Human Breast Cancer Development. Endocrine Oncology In: Ethier SP (ed). Humana Press: Totowa, NJ, pp. 101–120.

    Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ . (2001). Stat transcription factors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6: 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Weaver AM, Silva CM . (2006). Modulation of Stat5b activity in breast cancer cells by mutation of tyrosines within the transactivation domain. Mol Endocrinol 20: 2392–2405.

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Lerner L, Besser D, Darnell Jr JE . (2003). Independent and cooperative activation of chromosomal c-fos promoter by STAT3. J Biol Chem 278: 15794–15799.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wrzeszczynska MH, Horvath CM, Darnell Jr JE . (1999). Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 19: 7138–7146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the plasmids provided by Drs C Clevenger, RL Ilaria, E Kabotyanski and J Rosen, and the assistance of Dr P Keely, A Guadarrama and Dr G Wiepz with the invasion assays. This work was supported in part by NIH R01 CA78312 and DK07623 (LAS), and DAMD17-01-1-0460 (JHG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Schuler.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzman, J., Rugowski, D., Nikolai, S. et al. Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene 26, 6341–6348 (2007). https://doi.org/10.1038/sj.onc.1210454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210454

Keywords

This article is cited by

Search

Quick links