Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway

Abstract

Endoglin is a transforming growth factor β (TGFβ) superfamily auxiliary receptor. We had previously shown that it suppressed prostate cancer (PCa) cell motility, and that its expression was lost during PCa progression. The mechanism by which endoglin inhibits PCa cell motility is unknown. Here we demonstrate that endoglin abrogates TGFβ-mediated cell motility, but does not alter cell surface binding of TGFβ. By measuring Smad-specific phosphorylation and Smad-responsive promoter activity, endoglin was shown to constitutively activate Smad1, with little-to-no effect upon Smad3. Knockdown of Smad1 increased motility and abrogated endoglin's effects. As type I activin receptor-like kinases (ALKs) are necessary for Smad activation, we went on to show that knockdown of ALK2, but not TGFβRI (ALK5), abrogated endoglin-mediated decreases in cell motility and constitutively active ALK2 was sufficient to restore a low-motility phenotype in endoglin deficient cells. These findings provide the first evidence that endoglin decreases PCa cell motility through activation of the ALK2-Smad1 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Attisano L, Carcamo J, Ventura F, Weis FM, Massague J, Wrana JL . (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 75: 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Barbara NP, Wrana JL, Letarte M . (1999). Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274: 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Bergan R, Hakim F, Schwartz GN, Kyle E, Cepada R, Szabo JM et al. (1996a). Electroporation of synthetic oligodeoxynucleotides: a novel technique for ex vivo bone marrow purging. Blood 88: 731–741.

    CAS  PubMed  Google Scholar 

  • Bergan R, Kyle E, Nguyen P, Trepel J, Ingui C, Neckers L . (1996b). Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-1-integrin. Clin Exp Metastasis 14: 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Bissell MJ, Radisky D . (2001). Putting tumours in context. Nat Rev Cancer 1: 46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C . (2005). Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204: 574–584.

    Article  CAS  PubMed  Google Scholar 

  • Carroll PR, Lee KL, Fuks ZY, Kantoff PW . (2001). CANCER: Principals and Practices of Oncology.In: Devita Vt, Hellman S, Rosenberg Sa (eds). Lippincott-Raven: New York, pp 1418–1479.

    Google Scholar 

  • Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J et al. (1992). Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267: 19027–19030.

    CAS  PubMed  Google Scholar 

  • de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ . (1997). Characterization of functional domains within Smad4/DPC4. J Biol Chem 272: 13690–13696.

    Article  CAS  PubMed  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17: 3091–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desgrosellier JS, Mundell NA, McDonnell MA, Moses HL, Barnett JV . (2005). Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 280: 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Xu L, Chen S, Jovanovic BD, Helenowski IB, Kelly DL et al. (2006). Characterization of a method for profiling gene expression in cells recovered from intact human prostate tissue using RNA linear amplification. Prostate Cancer Prostatic Dis 9: 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R . (1993a). Determination of type I receptor specificity by the type II receptors for TGF-beta or activin. Science 262: 900–902.

    Article  CAS  PubMed  Google Scholar 

  • Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A et al. (1993b). Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 260: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  • Gougos A, Letarte M . (1990). Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265: 8361–8364.

    CAS  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C et al. (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12: 817–828.

    Article  CAS  PubMed  Google Scholar 

  • Hayes SA, Huang X, Kambhampati S, Platanias LC, Bergan RC . (2003). p38 MAP kinase modulates Smad-dependent changes in human prostate cell adhesion. Oncogene 22: 4841–4850.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Chen S, Xu L, Liu YQ, Deb DK, Platanias LC et al. (2005). Genistein inhibits p38 MAP kinase activation, MMP-2, and cell invasion in human prostate epithelial cells. Cancer Res 65: 3470–3478.

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic BD, Huang S, Liu Y, Naguib KN, Bergan RC . (2001). A simple analysis of gene expression and variability in gene arrays based on repeated observations. Am J Pharmacogenomics 1: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR . (1984). Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44: 3522–3529.

    CAS  PubMed  Google Scholar 

  • Lastres P, Letamendia A, Zhang H, Rius C, Almendro N, Raab U et al. (1996). Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 133: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  • Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M et al. (2004). Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23: 4018–4028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letamendia A, Lastres P, Botella LM, Raab U, Langa C, Velasco B et al. (1998). Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem 273: 33011–33019.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jovanovic B, Pins M, Lee C, Bergan RC . (2002). Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion. Oncogene 21: 8272–8281.

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Kyle E, Patel S, Housseau F, Hakim F, Lieberman R et al. (2001). Prostate cancer chemoprevention agents exhibit selective activity against early stage prostate cancer cells. Prostate Cancer Prostatic Dis 4: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (1998). TGF-beta signal transduction. Annu Rev Biochem 67: 753–791.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen PJ, Ebner R, Lopez AR, Derynck R . (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127: 2021–2036.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RM, de Sousa Lopes SM, Korchynskyi O, ten Dijke P, Mummery CL . (2004). Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J Cell Sci 117: 4653–4663.

    Article  CAS  PubMed  Google Scholar 

  • Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM, Dejana E et al. (2005). Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280: 27800–27808.

    Article  CAS  PubMed  Google Scholar 

  • Poste G, Fidler IJ . (1980). The pathogenesis of cancer metastasis. Nature 283: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H et al. (1993). Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8: 2879–2887.

    CAS  PubMed  Google Scholar 

  • Ulloa L, Doody J, Massague J . (1999). Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397: 710–713.

    Article  CAS  PubMed  Google Scholar 

  • Ward SM, Desgrosellier JS, Zhuang X, Barnett JV, Galper JB . (2002). Transforming growth factor beta (TGFbeta) signaling via differential activation of activin receptor-like kinases 2 and 5 during cardiac development. Role in regulating parasympathetic responsiveness. J Biol Chem 277: 50183–50189.

    Article  CAS  PubMed  Google Scholar 

  • Wieser R, Wrana JL, Massague J . (1995). GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 14: 2199–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Chen S, Bergan RC . (2006). MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25: 2987–2998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr Shan Chen for her many helpful suggestions throughout the manuscript's preparation. This work was funded by the following grants to Raymond C Bergan: a merit review award from the Veterans Administration and a Specialized Program of Research Excellence (SPORE) grant CA90386, from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services. Clarissa S Craft was funded by a training grant, T32CA09560, from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Bergan.

Additional information

Supplementary Information accompanies the paper on the Oncogene Web site (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craft, C., Romero, D., Vary, C. et al. Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 26, 7240–7250 (2007). https://doi.org/10.1038/sj.onc.1210533

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210533

Keywords

This article is cited by

Search

Quick links