Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HDAC3: taking the SMRT-N-CoRrect road to repression

Abstract

Known histone deacetylases (HDACs) are divided into different classes, and HDAC3 belongs to Class I. Through forming multiprotein complexes with the corepressors SMRT and N-CoR, HDAC3 regulates the transcription of a plethora of genes. A growing list of nonhistone substrates extends the role of HDAC3 beyond transcriptional repression. Here, we review data on the composition, regulation and mechanism of action of the SMRT/N-CoR-HDAC3 complexes and provide several examples of nontranscriptional functions, to illustrate the wide variety of physiological processes affected by this deacetylase. Furthermore, we discuss the implication of HDAC3 in cancer, focusing on leukemia. We conclude with some thoughts about the potential therapeutic efficacies of HDAC3 activity modulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  • Alenghat T, Yu J, Lazar MA . (2006). The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor. EMBO J 25: 3966–3974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N et al. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.

    CAS  PubMed  Google Scholar 

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N et al. (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21: 6470–6483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atsumi A, Tomita A, Kiyoi H, Naoe T . (2006). Histone deacetylase 3 (HDAC3) is recruited to target promoters by PML-RAR[alpha] as a component of the N-CoR co-repressor complex to repress transcription in vivo. Biochem Biophys Res Commun 345: 1471–1480.

    CAS  PubMed  Google Scholar 

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG . (2002). Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-[kappa]B and [beta]-amyloid precursor protein. Cell 110: 55–67.

    CAS  PubMed  Google Scholar 

  • Bartling B, Hofmann H-S, Boettger T, Hansen G, Burdach S, Silber R-E et al. (2005). Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer 49: 145–154.

    PubMed  Google Scholar 

  • Breiding D-E, Sverdrup F, Grossel MJ, Moscufo N, Boonchai W, Androphy EJ . (1997). Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. Mol Cell Biol 17: 7208–7219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM . (2000). Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 350: 199–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti SR, Nucifora G . (1999). The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem Biophys Res Commun 264: 871–877.

    CAS  PubMed  Google Scholar 

  • Chen JD, Evans RM . (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.

    CAS  PubMed  Google Scholar 

  • Chen L-F, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293: 1653–1657.

    CAS  Google Scholar 

  • Cho Y, Griswold A, Campbell C, Min K-T . (2005). Individual histone deacetylases in Drosophila modulate transcription of distinct genes. Genomics 86: 606–617.

    CAS  PubMed  Google Scholar 

  • Chuang HC, Chang CW, Chang GD, Yao TP, Chen H . (2006). Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34: 1459–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Codina A, Love JD, Li Y, Lazar MA, Neuhaus D, Schwabe JW . (2005). Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors. Proc Natl Acad Sci USA 102: 6009–6014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowger JM, Torchia J . (2006). Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry 45: 13150–13162.

    CAS  PubMed  Google Scholar 

  • Crawford PA, Dorn C, Sadovsky Y, Milbrandt J . (1998). Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol 18: 2949–2956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dangond F, Hafler DA, Tong JK, Randall J, Kojima R, Utku N et al. (1998). Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem Biophys Res Commun 242: 648–652.

    CAS  PubMed  Google Scholar 

  • Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong HJ et al. (1996). Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein. Proc Natl Acad Sci USA 93: 3624–3629.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emiliani S, Fischle W, Van Lint C, Al-Abed Y, Verdin E . (1998). Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 95: 2795–2800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson P, Gao J, Chang K, Look T, Whisenant E, Raimondi S et al. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  • Escaffit F, Vaute O, Chevillard-Briet M, Segui B, Takami Y, Nakayama T et al. (2007). Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol 27: 554–567.

    CAS  PubMed  Google Scholar 

  • Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril M-B et al. (2002). The retinoblastoma-histone deacetylase 3 complex inhibits PPAR[gamma] and adipocyte differentiation. Dev Cell 3: 903–910.

    CAS  PubMed  Google Scholar 

  • Fears S, Gavin M, Zhang DE, Hetherington C, Ben-David Y, Rowley JD et al. (1997). Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA 94: 1949–1954.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. (1999). Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 19: 6566–6574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J et al. (2005). Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438: 1116–1122.

    CAS  PubMed  Google Scholar 

  • Foglietti C, Filocamo G, Cundari E, De Rinaldis E, Lahm A, Cortese R et al. (2006). Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. J Biol Chem 281: 17968–17976.

    CAS  PubMed  Google Scholar 

  • Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD . (1995). The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11: 2667–2674.

    CAS  PubMed  Google Scholar 

  • Fu J, Yoon H, Qin J, Wong J . (2007). Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol 27: 4641–4651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X et al. (2005). Cyclin D1 inhibits peroxisome proliferator-activated receptor {gamma}-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280: 16934–16941.

    CAS  PubMed  Google Scholar 

  • Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y et al. (1998). The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91: 4028–4037.

    CAS  PubMed  Google Scholar 

  • Gao Z, He Q, Peng B, Chiao PJ, Ye J . (2006). Regulation of nuclear translocation of HDAC3 by I{kappa}B{alpha} is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor {gamma} function. J Biol Chem 281: 4540–4547.

    CAS  PubMed  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185–7191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser KB, Li J, Staver MJ, Wei R-Q, Albert DH, Davidsen SK . (2003). Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 310: 529–536.

    CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    CAS  PubMed  Google Scholar 

  • Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J et al. (2007). Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27: 1280–1295.

    CAS  PubMed  Google Scholar 

  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. (1998). Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391: 815–818.

    CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA . (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21: 6091–6101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R . (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14: 1048–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA . (2002). Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev 16: 3130–3135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guidez F, Petrie K, Ford AM, Lu H, Bennett CA, MacGregor A et al. (2000). Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 96: 2557–2561.

    CAS  PubMed  Google Scholar 

  • Hartman HB, Yu J, Alenghat T, Ishizuka T, Lazar MA . (2005). The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3. EMBO Rep 6: 445–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen T-M, Soderstrom M, Laherty CD, Torchia J et al. (1997). A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.

    CAS  PubMed  Google Scholar 

  • Hirota T, Lipp JJ, Toh BH, Peters JM . (2005). Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438: 1176–1180.

    CAS  PubMed  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SH, David G, Wong CW, Dejean A, Privalsky ML . (1997). SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 94: 9028–9033.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogeveen AT, Rossetti S, Stoyanova V, Schonkeren J, Fenaroli A, Schiaffonati L et al. (2002). The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies. Oncogene 21: 6703–6712.

    CAS  PubMed  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R et al. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.

    CAS  PubMed  Google Scholar 

  • Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA . (2000). Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 14: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al. (1988). Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72: 567–572.

    CAS  PubMed  Google Scholar 

  • Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM . (2006). Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312: 748–751.

    CAS  PubMed  Google Scholar 

  • Huynh KD, Bardwell VJ . (1998). The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17: 2473–2484.

    CAS  PubMed  Google Scholar 

  • Ishizuka T, Lazar MA . (2003). The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 23: 5122–5131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB . (1997). The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11: 693–705.

    CAS  PubMed  Google Scholar 

  • Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ et al. (2000). Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102: 753–763.

    CAS  PubMed  Google Scholar 

  • Jepsen K, Rosenfeld MG . (2002). Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 115: 689–698.

    CAS  PubMed  Google Scholar 

  • Jeyakumar M, Liu X-F, Erdjument-Bromage H, Tempst P, Bagchi MK . (2007). Phosphorylation of thyroid hormone receptor-associated NCoR corepressor holocomplex by the DNA-dependent protein kinase enhances its histone deacetylase activity. J Biol Chem 282: 9312–9322.

    CAS  PubMed  Google Scholar 

  • Jin C, Li H, Murata T, Sun K, Horikoshi M, Chiu R et al. (2002). JDP2, a repressor of AP-1, recruits a histone deacetylase 3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol Cell Biol 22: 4815–4826.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin D-Y, Teramoto H, Giam C-Z, Chun RF, Gutkind JS, Jeang K-T . (1997). A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor alpha. J Biol Chem 272: 25816–25823.

    CAS  PubMed  Google Scholar 

  • Johnson CA, White DA, Lavender JS, O'Neill LP, Turner BM . (2002). Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem 277: 9590–9597.

    CAS  PubMed  Google Scholar 

  • Johnstone RW . (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1: 287–299.

    CAS  PubMed  Google Scholar 

  • Kao H-Y, Downes M, Ordentlich P, Evans RM . (2000). Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14: 55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannis TC, El-Osta A . (2007). Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21: 61–65.

    CAS  PubMed  Google Scholar 

  • Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P et al. (2006). The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442: 312–316.

    CAS  PubMed  Google Scholar 

  • Kouzarides T . (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19: 1176–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R et al. (1998). Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95: 2920–2925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Yea S, Li S, Chen Z, Narla G, Banck M et al. (2005). Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280: 26941–26952.

    CAS  PubMed  Google Scholar 

  • Li J, Lin Q, Wang W, Wade P, Wong J . (2002). Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 16: 687–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J . (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 19: 4342–4350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J et al. (2006). A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20: 2566–2579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liby P, Kostrouchova M, Pohludka M, Yilma P, Hrabal P, Sikora J et al. (2006). Elevated and deregulated expression of HDAC3 in human astrocytic glial tumours. Folia Biol (Praha) 52: 21–33.

    CAS  Google Scholar 

  • Licht JD, Chomienne C, Goy A, Chen A, Scott AA, Head DR et al. (1995). Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85: 1083–1094.

    CAS  PubMed  Google Scholar 

  • Lin H-M, Zhao L, Cheng S-Y . (2002). Cyclin D1 is a ligand-independent co-repressor for thyroid hormone receptors. J Biol Chem 277: 28733–28741.

    CAS  PubMed  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM . (1998). Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811–814.

    CAS  PubMed  Google Scholar 

  • Liu X-f, Bagchi MK . (2004). Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J Biol Chem 279: 15050–15058.

    CAS  PubMed  Google Scholar 

  • Longworth MS, Laimins LA . (2006). Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene 25: 4495–4500.

    CAS  PubMed  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR et al. (1998). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18: 7176–7184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monte M, Simonatto M, Peche LY, Bublik DR, Gobessi S, Pierotti MA et al. (2006). MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci USA 103: 11160–11165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE et al. (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380.

    CAS  PubMed  Google Scholar 

  • Narita N, Fujieda S, Tokuriki M, Takahashi N, Tsuzuki H, Ohtsubo T et al. (2005). Inhibition of histone deacetylase 3 stimulates apoptosis induced by heat shock under acidic conditions in human maxillary cancer. Oncogene 24: 7346–7354.

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    CAS  PubMed  Google Scholar 

  • Ordentlich P, Downes M, Xie W, Genin A, Spinner NB, Evans RM . (1999). Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc Natl Acad Sci USA 96: 2639–2644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park E-J, Schroen DJ, Yang M, Li H, Li L, Chen JD . (1999). SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci USA 96: 3519–3524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y-C, Kuo F, Breiding DE, Wang Y-F, Mansur CP, Androphy EJ . (2001). AMF1 (GPS2) modulates p53 transactivation. Mol Cell Biol 21: 5913–5924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG . (2004). A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511–526.

    CAS  PubMed  Google Scholar 

  • Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M et al. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15: 2991–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racanicchi S, Maccherani C, Liberatore C, Billi M, Gelmetti V, Panigada M et al. (2005). Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO J 24: 1232–1242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM . (1977). n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268: 462–464.

    CAS  PubMed  Google Scholar 

  • Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R et al. (1995). The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85: 3662–3670.

    CAS  PubMed  Google Scholar 

  • Rowley JD . (1982). Chromosome abnormalities in human acute nonlymphocytic leukemia: relationship to age, sex, and exposure to mutagens. Natl Cancer Inst Monogr 60: 17–23.

    CAS  PubMed  Google Scholar 

  • Schroeder TM, Kahler RA, Li X, Westendorf JJ . (2004). Histone deacetylase 3 interacts with Runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem 279: 41998–42007.

    CAS  PubMed  Google Scholar 

  • Shibata H, Nawaz Z, Tsai SY, O'Malley BW, Tsai MJ . (1997). Gene silencing by chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear receptor-corepressor (N-CoR) and silencing mediator for retinoic acid receptor and thyroid hormone receptor (SMRT). Mol Endocrinol 11: 714–724.

    CAS  PubMed  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  • Smith CL, Nawaz Z, O'Malley BW . (1997). Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11: 657–666.

    CAS  PubMed  Google Scholar 

  • Spain BH, Bowdish KS, Pacal AR, Staub SF, Koo D, Chang CY et al. (1996). Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol 16: 6698–6706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K et al. (2000). TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5: 649–658.

    CAS  PubMed  Google Scholar 

  • Takami Y, Nakayama T . (2000). N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275: 16191–16201.

    CAS  PubMed  Google Scholar 

  • Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Yazaki Y et al. (1997). An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. Leukemia 11 (Suppl 3): 299–302.

    PubMed  Google Scholar 

  • Thevenet L, Mejean C, Moniot B, Bonneaud N, Galeotti N, Aldrian-Herrada G et al. (2004). Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 23: 3336–3345.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida H, Zhang J, Nimer S . (1997). AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 158: 2251–2258.

    CAS  PubMed  Google Scholar 

  • Vermeulen M, Carrozza MJ, Lasonder E, Workman JL, Logie C, Stunnenberg HG . (2004). In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/SMRT corepressor complexes. Mol Cell Biol 24: 2364–2372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen M, Walter W, Le Guezennec X, Kim J, Edayathumangalam RS, Lasonder E et al. (2006). A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/SMRT corepressors on chromatin. Mol Cell Biol 26: 5226–5236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali G, Boffa LC, Bradbury EM, Allfrey VG . (1978). Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA 75: 2239–2243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F et al. (2006). The methyl-CpG binding protein MBD1 is required for PML-RARalpha function. Proc Natl Acad Sci USA 103: 1400–1405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 95: 10860–10865.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93: 3444–3449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD . (1999). Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97: 99–109.

    CAS  PubMed  Google Scholar 

  • Wen Y-D, Perissi V, Staszewski LM, Yang W-M, Krones A, Glass CK et al. (2000). The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 97: 7202–7207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125: 467–481.

    CAS  PubMed  Google Scholar 

  • Wilson AJ, Byun D-S, Popova N, Murray LB, L'Italien K, Sowa Y et al. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281: 13548–13558.

    CAS  PubMed  Google Scholar 

  • Xia Y, Wang J, Liu T-J, Yung WKA, Hunter T, Lu Z . (2007). c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosis. Mol Cell 25: 219–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Lavinsky RM, Dasen JS, Flynn SE, McInerney EM, Mullen T-M et al. (1998). Signal-specific co-activator domain requirements for Pit-1 activation. Nature 395: 301–306.

    CAS  PubMed  Google Scholar 

  • Yang W-M, Tsai S-C, Wen Y-D, Fejer G, Seto E . (2002). Functional domains of histone deacetylase-3. J Biol Chem 277: 9447–9454.

    CAS  PubMed  Google Scholar 

  • Yang W-M, Yao Y-L, Sun J-M, Davie JR, Seto E . (1997). Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272: 28001–28007.

    CAS  PubMed  Google Scholar 

  • Yin L, Lazar MA . (2005). The orphan nuclear receptor Rev-erb{alpha} recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 19: 1452–1459.

    CAS  PubMed  Google Scholar 

  • Yoon HG, Chan DW, Huang ZQ, Li J, Fondell JD, Qin J et al. (2003). Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J 22: 1336–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon H-G, Choi Y, Cole PA, Wong J . (2005). Reading and function of a histone code involved in targeting corepressor complexes for repression. Mol Cell Biol 25: 324–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA . (2003). A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J 22: 3403–3410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir I, Dawson J, Lavinsky RM, Glass CK, Rosenfeld MG, Lazar MA . (1997). Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc Natl Acad Sci USA 94: 14400–14405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelent A, Guidez F, Melnick A, Waxman S, Licht JD . (2001). Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 20: 7186–7203.

    CAS  PubMed  Google Scholar 

  • Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S et al. (2006). HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol 174: 1059–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Zhou M-M . (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513: 124–128.

    CAS  PubMed  Google Scholar 

  • Zhang D, Yoon H-G, Wong J . (2005a). JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol 25: 6404–6414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Kalkum M, Chait BT, Roeder RG . (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 9: 611–623.

    CAS  PubMed  Google Scholar 

  • Zhang X, Ozawa Y, Lee H, Wen Y-D, Tan T-H, Wadzinski BE et al. (2005b). Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19: 827–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wharton W, Yuan Z, Tsai S-C, Olashaw N, Seto E . (2004). Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol 24: 5106–5118.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on corepressors carried out in our laboratory was funded by NIH DK58679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karagianni, P., Wong, J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 26, 5439–5449 (2007). https://doi.org/10.1038/sj.onc.1210612

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210612

Keywords

This article is cited by

Search

Quick links