Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy

Abstract

Heat shock protein 90 (Hsp90) is a survival signaling chaperone and a cancer chemotherapeutic target. However, we have found that inhibitors of Hsp90 diminished the apoptotic response induced in leukemic cells by the antitumor alkyl-lysophospholipid analog edelfosine, which acts through lipid raft reorganization. Edelfosine treatment recruited Hsp90, c-Jun N-terminal kinase (JNK) and apoptotic molecules in lipid rafts, but not the JNK regulators apoptosis signal-regulating kinase 1 (ASK1) and Daxx, or the survival signaling molecules extracellular signal-regulated kinase (ERK) and Akt. Following edelfosine treatment, Hsp90 bound to JNK in lipid rafts and Hsp90-JNK clusters were identified at the plasma membrane by immunoelectron microscopy. Hsp90 inhibition reduced JNK protein level in lipid rafts and turned proapoptotic persistent JNK activation into a transient response in edelfosine-treated cells. Decrease in edelfosine-induced JNK activation and apoptosis by Hsp90 inhibition was prevented through proteasome inhibition, suggesting that Hsp90 inhibition diminishes apoptosis by promoting JNK protein degradation. Expression of ASK1 dominant negative mutant did not affect JNK activation and apoptosis following edelfosine treatment. These data indicate that lipid raft-recruited JNK is ASK1-independent and becomes a novel Hsp90 client protein. Our results reveal a new chaperoning role of Hsp90 on JNK-mediated apoptosis following its recruitment in lipid rafts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D . (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860–1863.

    Article  CAS  Google Scholar 

  • Chen YR, Wang X, Templeton D, Davis RJ, Tan TH . (1996). The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271: 31929–31936.

    Article  CAS  Google Scholar 

  • Chiosis G, Rosen N, Sepp-Lorenzino L . (2001). LY294002-geldanamycin heterodimers as selective inhibitors of the PI3K and PI3K-related family. Bioorg Med Chem Lett 11: 909–913.

    Article  CAS  Google Scholar 

  • Delmas D, Rebe C, Lacour S, Filomenko R, Athias A, Gambert P et al. (2003). Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278: 41482–41490.

    Article  CAS  Google Scholar 

  • Gajate C, Barasoain I, Andreu JM, Mollinedo F . (2000a). Induction of apoptosis in leukemic cells by the reversible microtubule-disrupting agent 2-methoxy-5-(2′,3′,4′-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one: protection by Bcl-2 and Bcl-XL and cell cycle arrest. Cancer Res 60: 2651–2659.

    CAS  PubMed  Google Scholar 

  • Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM et al. (2004). Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200: 353–365.

    Article  CAS  Google Scholar 

  • Gajate C, Fonteriz RI, Cabaner C, Alvarez-Noves G, Alvarez-Rodriguez Y, Modolell M et al. (2000b). Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer 85: 674–682.

    Article  CAS  Google Scholar 

  • Gajate C, Mollinedo F . (2001). The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98: 3860–3863.

    Article  CAS  Google Scholar 

  • Gajate C, Mollinedo F . (2002). Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH3 (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3: 491–525.

    Article  CAS  Google Scholar 

  • Gajate C, Mollinedo F . (2005). Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280: 11641–11647.

    Article  CAS  Google Scholar 

  • Gajate C, Mollinedo F . (2007). Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109: 711–719.

    Article  CAS  Google Scholar 

  • Gajate C, Santos-Beneit A, Modolell M, Mollinedo F . (1998). Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Mol Pharmacol 53: 602–612.

    Article  CAS  Google Scholar 

  • Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ, Younes A . (2006). Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res 12: 584–590.

    Article  CAS  Google Scholar 

  • George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F et al. (2005). Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 105: 1768–1776.

    Article  CAS  Google Scholar 

  • Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O et al. (2004). Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64: 3593–3598.

    Article  CAS  Google Scholar 

  • Mollinedo F, Fernandez-Luna JL, Gajate C, Martin-Martin B, Benito A, Martinez-Dalmau R et al. (1997). Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-XL . Cancer Res 57: 1320–1328.

    CAS  PubMed  Google Scholar 

  • Mollinedo F, Gajate C . (2006). Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist Updat 9: 51–73.

    Article  CAS  Google Scholar 

  • Mollinedo F, Gajate C, Martin-Santamaria S, Gago F . (2004). ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11: 3163–3184.

    Article  CAS  Google Scholar 

  • Mollinedo F, Gajate C, Modolell M . (1994). The ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun proto-oncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem J 302: 325–329.

    Article  CAS  Google Scholar 

  • Mollinedo F, Martin-Martin B, Calafat J, Nabokina SM, Lazo PA . (2003). Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. J Immunol 170: 1034–1042.

    Article  CAS  Google Scholar 

  • Mollinedo F, Martinez-Dalmau R, Modolell M . (1993). Early and selective induction of apoptosis in human leukemic cells by the alkyl-lysophospholipid ET-18-OCH3 . Biochem Biophys Res Commun 192: 603–609.

    Article  CAS  Google Scholar 

  • Neckers L . (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8: S55–S61.

    Article  CAS  Google Scholar 

  • Nieto-Miguel T, Gajate C, Mollinedo F . (2006). Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J Biol Chem 281: 14833–14840.

    Article  CAS  Google Scholar 

  • Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M . (1999). Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res 59: 2457–2463.

    CAS  PubMed  Google Scholar 

  • Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N . (2003). Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63: 2139–2144.

    CAS  PubMed  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2: 222–228.

    Article  CAS  Google Scholar 

  • van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ . (2002). Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277: 39541–39547.

    Article  CAS  Google Scholar 

  • Whitesell L, Lindquist SL . (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772.

    Article  CAS  Google Scholar 

  • Yang X, Khosravi-Far R, Chang HY, Baltimore D . (1997). Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89: 1067–1076.

    Article  CAS  Google Scholar 

  • Zaremberg V, Gajate C, Cacharro LM, Mollinedo F, McMaster CR . (2005). Cytotoxicity of an anti-cancer lysophospholipid through selective modification of lipid raft composition. J Biol Chem 280: 38047–38058.

    Article  CAS  Google Scholar 

  • Zhang H, Wu W, Du Y, Santos SJ, Conrad SE, Watson JT et al. (2004). Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 279: 19457–19463.

    Article  CAS  Google Scholar 

  • Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB et al. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120: 715–727.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Samuel Ogueta for two-dimensional gel electrophoresis and MALDI-TOF experiments. This work was supported by grants from Fondo de Investigación Sanitaria and European Commission (FIS-FEDER 06/0813, 04/0843, 02/1199), Ministerio de Educación y Ciencia (SAF2005-04293), Fundación de Investigación Médica Mutua Madrileña (FMM), Fundación ‘la Caixa’ (BM05-30-0) and Junta de Castilla y León (CSI04A05). TNM is the recipient of a predoctoral fellowship from the Junta de Castilla y León. CG is supported by the Ramón y Cajal Program from the Ministerio de Educación y Ciencia of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Mollinedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto-Miguel, T., Gajate, C., González-Camacho, F. et al. Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene 27, 1779–1787 (2008). https://doi.org/10.1038/sj.onc.1210816

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210816

Keywords

This article is cited by

Search

Quick links