Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Activation and regulation of ATM kinase activity in response to DNA double-strand breaks

Abstract

The ataxia–telangiectasia-mutated (ATM) protein kinase is rapidly and specifically activated in response to DNA double-strand breaks in eukaryotic cells. In this review, we summarize recent insights into the mechanism of ATM activation, focusing on the role of the Mre11/Rad50/Nbs1 (MRN) complex in this process. We also compare observations of the ATM activation process in different biological systems and highlight potential candidates for cellular factors that may participate in regulating ATM activity in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ali A, Zhang J, Bao S, Liu I, Otterness D, Dean NM et al. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 18: 249–254.

    CAS  PubMed Central  Google Scholar 

  • Anderson L, Henderson C, Adachi Y . (2001). Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 21: 1719–1729.

    CAS  PubMed Central  Google Scholar 

  • Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD . (2005). Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 79: 11382–11391.

    CAS  PubMed Central  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Becker E, Meyer V, Madaoui H, Guerois R . (2006). Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22: 1289–1292.

    CAS  Google Scholar 

  • Berkovich E, Monnat Jr RJ, Kastan MB . (2007). Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9: 683–690.

    CAS  Google Scholar 

  • Bhaskara V, Dupre A, Lengsfeld B, Hopkins BB, Chan A, Lee JH et al. (2007). Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol Cell 25: 647–661.

    CAS  PubMed Central  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL . (2000). FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25: 225–227.

    CAS  Google Scholar 

  • Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J et al. (2006). Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127: 1361–1373.

    CAS  PubMed Central  Google Scholar 

  • Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M et al. (2001). Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 21: 5214–5222.

    CAS  PubMed Central  Google Scholar 

  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates III JR et al. (1998). The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    CAS  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22: 6610–6620.

    CAS  PubMed Central  Google Scholar 

  • Cerosaletti K, Wright J, Concannon P . (2006). Active role for nibrin in the kinetics of ATM activation. Mol Cell Biol 26: 1691–1699.

    CAS  PubMed Central  Google Scholar 

  • Cerosaletti KM, Concannon P . (2003). Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 278: 21944–21951.

    CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ . (2001). ATR and ATRIP: partners in checkpoint signaling. Science 294: 1713–1716.

    CAS  PubMed Central  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ . (1999). Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.

    CAS  Google Scholar 

  • Costanzo V, Paull T, Gottesman M, Gautier J . (2004). Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2: E110.

    PubMed Central  Google Scholar 

  • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM . (2007). The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21: 1472–1477.

    CAS  PubMed Central  Google Scholar 

  • Desai-Mehta A, Cerosaletti KM, Concannon P . (2001). Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21: 2184–2191.

    CAS  PubMed Central  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. (2005). Role of Nbs1 in the activation of the ATM kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.

    CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Kruhlak MJ, Lee Y, Difilippantonio MJ, Feigenbaum L et al. (2007). Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med 204: 1003–1011.

    CAS  PubMed Central  Google Scholar 

  • DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998–1002.

    CAS  Google Scholar 

  • Dupre A, Boyer-Chatenet L, Gautier J . (2006). Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex. Nat Struct Mol Biol 13: 451–457.

    CAS  Google Scholar 

  • Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA et al. (2004). BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279: 31251–31258.

    CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    CAS  PubMed Central  Google Scholar 

  • Featherstone C, Jackson SP . (1998). DNA repair: the Nijmegen breakage syndrome protein. Curr Biol 8: R622–R625.

    CAS  Google Scholar 

  • Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M et al. (2003). A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22: 2860–2871.

    CAS  PubMed Central  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S et al. (2000). ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25: 115–119.

    CAS  Google Scholar 

  • Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK . (2001). Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of BRCA1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 276: 17276–17280.

    CAS  Google Scholar 

  • Girard PM, Riballo E, Begg AC, Waugh A, Jeggo PA . (2002). Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 21: 4191–4199.

    CAS  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB et al. (2004). Autophosphorylation of ataxia–telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 23: 4451–4461.

    CAS  PubMed Central  Google Scholar 

  • Guo CY, Brautigan DL, Larner JM . (2002). ATM-dependent dissociation of B55 regulatory subunit from nuclear PP2A in response to ionizing radiation. J Biol Chem 277: 4839–4844.

    CAS  Google Scholar 

  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT et al. (2005). Involvement of human MOF in ATM function. Mol Cell Biol 25: 5292–5305.

    CAS  PubMed Central  Google Scholar 

  • Kanu N, Behrens A . (2007). ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J 26: 2933–2941.

    CAS  PubMed Central  Google Scholar 

  • Kim ST, Xu B, Kastan MB . (2002). Involvement of the cohesin protein, SMC1, in ATM-dependent and independent responses to DNA damage. Genes Dev 16: 560–570.

    CAS  PubMed Central  Google Scholar 

  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB . (2004). Phosphorylation of SMC1 is a critical downstream event in the ATM–NBS1–BRCA1 pathway. Genes Dev 18: 1423–1438.

    CAS  PubMed Central  Google Scholar 

  • Kobayashi J, Tauchi H, Sakamoto S, Nakamura A, Morishima K, Matsuura S et al. (2002). NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol 12: 1846–1851.

    CAS  Google Scholar 

  • Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF . (2003). ATP activates ataxia–telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 278: 9309–9317.

    CAS  Google Scholar 

  • Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF . (2006). Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25: 3504–3514.

    CAS  PubMed Central  Google Scholar 

  • Lee J, Kumagai A, Dunphy WG . (2007). The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282: 28036–28044.

    CAS  Google Scholar 

  • Lee J-H, Ghirlando R, Bhaskara V, Hoffmeyer MR, Gu J, Paull TT . (2003a). Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ATLD mutant complexes. J Biol Chem 278: 45171–45181.

    CAS  Google Scholar 

  • Lee JH, Paull TT . (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304: 93–96.

    CAS  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.

    CAS  Google Scholar 

  • Lee JH, Xu B, Lee CH, Ahn JY, Song MS, Lee H et al. (2003b). Distinct functions of Nijmegen breakage syndrome in ataxia–telangiectasia mutated-dependent responses to DNA damage. Mol Cancer Res 1: 674–681.

    CAS  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    CAS  PubMed Central  Google Scholar 

  • Lubert EJ, Hong Y, Sarge KD . (2001). Interaction between protein phosphatase 5 and the A subunit of protein phosphatase 2A: evidence for a heterotrimeric form of protein phosphatase 5. J Biol Chem 276: 38582–38587.

    CAS  Google Scholar 

  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A et al. (1999). Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96: 7376–7381.

    CAS  Google Scholar 

  • Maser RS, Zinkel R, Petrini JH . (2001). An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet 27: 417–421.

    CAS  Google Scholar 

  • McConnell JL, Gomez RJ, McCorvey LR, Law BK, Wadzinski BE . (2007). Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene 26: 6021–6030.

    CAS  Google Scholar 

  • Mochan TA, Venere M, DiTullio Jr RA, Halazonetis TD . (2003). 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63: 8586–8591.

    CAS  Google Scholar 

  • Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A, Alden E et al. (2004). The rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 335: 937–951.

    CAS  Google Scholar 

  • Nakada D, Matsumoto K, Sugimoto K . (2003). ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17: 1957–1962.

    CAS  PubMed Central  Google Scholar 

  • Nakanishi K, Taniguchi T, Ranganathan V, New HV, Moreau LA, Stotsky M et al. (2002). Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 4: 913–920.

    CAS  Google Scholar 

  • Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH et al. (2005). The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120: 209–221.

    CAS  Google Scholar 

  • Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L et al. (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443: 222–225.

    CAS  PubMed Central  Google Scholar 

  • Petrini JH . (2000). The Mre11 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 12: 293–296.

    CAS  Google Scholar 

  • Quevillon S, Mirande M . (1996). The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett 395: 63–67.

    CAS  Google Scholar 

  • Rappold I, Iwabuchi K, Date T, Chen J . (2001). Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153: 613–620.

    CAS  PubMed Central  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al. (1995a). A single ataxia–telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

    CAS  PubMed Central  Google Scholar 

  • Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS et al. (1995b). The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4: 2025–2032.

    CAS  Google Scholar 

  • Schultz LB, Chehab NH, Malikzay A, Halazonetis TD . (2000). p53-binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151: 1381–1390.

    CAS  PubMed Central  Google Scholar 

  • Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM . (1999). Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4: 1093–1099.

    CAS  Google Scholar 

  • Shang YL, Bodero AJ, Chen PL . (2003). NFBD1, a novel nuclear protein with signature motifs of FHA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response. J Biol Chem 278: 6323–6329.

    CAS  Google Scholar 

  • Shiloh Y . (1997). Ataxia–telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 31: 635–662.

    CAS  Google Scholar 

  • Shiloh Y . (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31: 402–410.

    CAS  Google Scholar 

  • Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T et al. (2005). Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 280: 30336–30341.

    CAS  Google Scholar 

  • Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C et al. (2006). Wip1-phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23: 757–764.

    CAS  Google Scholar 

  • Stewart GS, Last JI, Stankovic T, Haites N, Kidd AM, Byrd PJ et al. (2001). Residual ataxia telangiectasia mutated protein function in cells from ataxia telangiectasia patients, with 5762ins137 and 7271T—>G mutations, showing a less severe phenotype. J Biol Chem 276: 30133–30141.

    CAS  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG et al. (1999). The DNA double-strand break repair gene hMre11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99: 577–587.

    CAS  PubMed Central  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD . (2002). Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418: 348–352.

    CAS  Google Scholar 

  • Stracker TH, Morales M, Couto SS, Hussein H, Petrini JH . (2007). The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447: 218–221.

    CAS  PubMed Central  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD . (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.

    CAS  Google Scholar 

  • Sun Y, Jiang X, Chen S, Price BD . (2006). Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580: 4353–4356.

    CAS  Google Scholar 

  • Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H et al. (2000). p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19: 6517–6526.

    CAS  PubMed Central  Google Scholar 

  • Tauchi H, Kobayashi J, Morishima K, Matsuura S, Nakamura A, Shiraishi T et al. (2001). The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50/hMRE11/NBS1 complex DNA repair activity. J Biol Chem 276: 12–15.

    CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    CAS  PubMed Central  Google Scholar 

  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K et al. (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.

    CAS  Google Scholar 

  • Wang B, Matsuoka S, Carpenter PB, Elledge SJ . (2002). 53BP1, a mediator of the DNA damage checkpoint. Science 298: 1435–1438.

    CAS  Google Scholar 

  • Wu X, Avni D, Chiba T, Yan F, Zhao Q, Lin Y et al. (2004). SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18: 1305–1316.

    CAS  PubMed Central  Google Scholar 

  • Xia Z, Morales JC, Dunphy WG, Carpenter PB . (2001). Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J Biol Chem 276: 2708–2718.

    CAS  Google Scholar 

  • Xiao Y, Weaver DT . (1997). Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 25: 2985–2991.

    CAS  PubMed Central  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of BRCA1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    CAS  PubMed Central  Google Scholar 

  • Xu B, O'Donnell AH, Kim ST, Kastan MB . (2002). Phosphorylation of serine 1387 in BRCA1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 62: 4588–4591.

    CAS  Google Scholar 

  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J . (2002). SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16: 571–582.

    CAS  PubMed Central  Google Scholar 

  • You Z, Chahwan C, Bailis J, Hunter T, Russell P . (2005). ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25: 5363–5379.

    CAS  PubMed Central  Google Scholar 

  • Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK . (2005). Identification of domains of ataxia-telangiectasia mutated required for nuclear localization and chromatin association. J Biol Chem 280: 27587–27594.

    CAS  Google Scholar 

  • Zhao S, Renthal W, Lee EY . (2002). Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res 30: 4815–4822.

    CAS  PubMed Central  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A . (2001). Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11: 105–109.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T T Paull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Paull, T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748 (2007). https://doi.org/10.1038/sj.onc.1210872

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210872

Keywords

This article is cited by

Search

Quick links