Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epithelial stem cells in human prostate growth and disease

Abstract

Benign prostatic hyperplasia and prostate cancer arise as a consequence of changes in the balance between cell division and differentiation. Little, however, is known about the control of this process. Stem cells are a small population of cells that divide occasionally to produce transit-amplifying cells that in turn produce the differentiated cell types of the tissue. It is believed that cancer cell proliferation is also driven by stem cells. We have shown that around one in 200 prostate epithelial cells have characteristics of stem cells and that these cells are contained within a population with a distinct keratin expression pattern. Work is now ongoing to identify markers for these cells that will allow us to study the role they play in prostatic disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Isaacs JT, Coffey DS . Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 1989; 2: 33–50.

    Article  CAS  PubMed  Google Scholar 

  2. Bonkhoff H, Remberger K . Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996; 28: 98–106.

    Article  CAS  PubMed  Google Scholar 

  3. Shamblott MJ et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998; 95: 13726–13731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson JA et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  5. Morrison SJ et al. Identification of a lineage of multipotent hematopoietic progenitors. Development 1997; 124: 1929–1939.

    CAS  PubMed  Google Scholar 

  6. Potten CS, Loeffler M . Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110: 1001–1020.

    CAS  PubMed  Google Scholar 

  7. Lavker RM, Sun TT . Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 2000; 97: 13473–13475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1: 661–673.

    Article  CAS  PubMed  Google Scholar 

  9. Mezey E et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  10. Lagasse E et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  11. Poulsom R . Does bone marrow contain renal precursor cells? Nephron Exp Nephrol 2003; 93: e53–e57.

    Article  PubMed  Google Scholar 

  12. Bickenbach JR, Chism E . Selection and extended growth of murine epidermal stem cells in culture. Exp Cell Res 1998; 244: 184–195.

    Article  CAS  PubMed  Google Scholar 

  13. Morris RJ, Potten CS . Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 1999; 112: 470–475.

    Article  CAS  PubMed  Google Scholar 

  14. Cotsarelis G, Sun TT, Lavker RM . Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  15. Schermer A, Galvin S, Sun TT . Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 1986; 103: 49–62.

    Article  CAS  PubMed  Google Scholar 

  16. Tsujimura A et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 2002; 157: 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reya T et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  18. Park CH, Bergsagel DE, McCulloch EA . Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 1971; 46: 411–422.

    CAS  PubMed  Google Scholar 

  19. Bruce WR, Van Der Gaag H . A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199: 79–80.

    Article  CAS  PubMed  Google Scholar 

  20. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  21. Verhagen AP et al. Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 1992; 52: 6182–6187.

    CAS  PubMed  Google Scholar 

  22. De Marzo AM et al. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998; 153: 911–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Leenders GJ, Schalken JA . Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol 2003; 46 (Suppl): S3–S10.

    Article  PubMed  Google Scholar 

  24. Nagle RB et al. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 1987; 47: 281–286.

    CAS  PubMed  Google Scholar 

  25. Liu AY et al. Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate 1999; 40: 192–199.

    Article  PubMed  Google Scholar 

  26. English HF, Santen RJ, Isaacs JT . Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 1987; 11: 229–242.

    Article  CAS  PubMed  Google Scholar 

  27. Evans GS, Chandler JA . Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 1987; 11: 339–351.

    Article  CAS  PubMed  Google Scholar 

  28. Verhagen AP et al. Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 1988; 13: 25–38.

    Article  CAS  PubMed  Google Scholar 

  29. van der Kwast TH et al. Cycling activity of benign prostatic epithelial cells during long-term androgen blockade: evidence for self-renewal of luminal cells. J Pathol 1998; 186: 406–409.

    Article  CAS  PubMed  Google Scholar 

  30. Hudson DL et al. Epithelial differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 2001; 49: 271–278.

    Article  CAS  PubMed  Google Scholar 

  31. Liu AY et al. Cell–cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci USA 1997; 94: 10705–10710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McDonnell TJ et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940–6944.

    CAS  PubMed  Google Scholar 

  33. Abrahamsson PA . Neuroendocrine differentiation in prostatic carcinoma. Prostate 1999; 39: 135–148.

    Article  CAS  PubMed  Google Scholar 

  34. Bonkhoff H, Stein U, Remberger K . Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 1994; 25: 42–46.

    Article  CAS  PubMed  Google Scholar 

  35. Xue Y et al. Identification of intermediate cell types by keratin expression in the developing prostate. Prostate 1998; 34: 292–301.

    Article  CAS  PubMed  Google Scholar 

  36. van Leenders G et al. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 2000; 80: 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  37. Lechner JF et al. Normal human prostate epithelial cell cultures. Methods Cell Biol 1980; 21B: 195–225.

    Article  CAS  PubMed  Google Scholar 

  38. Peehl DM, Stamey TA . Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortisone. Prostate 1986; 8: 51–61.

    Article  CAS  PubMed  Google Scholar 

  39. Robinson EJ, Neal DE, Collins AT . Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 1998; 37: 149–160.

    Article  CAS  PubMed  Google Scholar 

  40. Fry PM et al. Comparison of marker protein expression in benign prostatic hyperplasia in vivo and in vitio. BJU Int 2000; 85: 504–513.

    Article  CAS  PubMed  Google Scholar 

  41. Hudson DL et al. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 2000; 80: 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  42. Sawicki JA, Rothman CJ . Evidence for stem cells in cultures of mouse prostate epithelial cells. Prostate 2002; 50: 46–53.

    Article  CAS  PubMed  Google Scholar 

  43. Kleinman HK et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982; 21: 6188–6193.

    Article  CAS  PubMed  Google Scholar 

  44. Petersen OW et al. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 1992; 89: 9064–9068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fong CJ et al. Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 1991; 19: 221–235.

    Article  CAS  PubMed  Google Scholar 

  46. Cunha GR et al. Hormone-induced morphogenesis and growth: role of mesenchymal–epithelial interactions. Recent Prog Horm Res 1983; 39: 559–598.

    CAS  PubMed  Google Scholar 

  47. Bayne CW et al. A novel coculture model for benign prostatic hyperplasia expressing both isoforms of 5 alpha-reductase. J Clin Endocrinol Metab 1998; 83: 206–213.

    CAS  PubMed  Google Scholar 

  48. Collins AT et al. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 2001; 114: 3865–3872.

    CAS  PubMed  Google Scholar 

  49. Lang SH et al. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ 2001; 12: 631–640.

    CAS  PubMed  Google Scholar 

  50. Fuchs E, Tumbar T, Guasch G . Socializing with the neighbors: stem cells and their niche. Cell 2004; 116: 769–778.

    Article  CAS  PubMed  Google Scholar 

  51. Jones PH, Watt FM . Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993; 73: 713–724.

    Article  CAS  PubMed  Google Scholar 

  52. Jones PH, Harper S, Watt FM . Stem cell patterning and fate in human epidermis. Cell 1995; 80: 83–93.

    Article  CAS  PubMed  Google Scholar 

  53. Adams JC, Watt FM . Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell 1990; 63: 425–435.

    Article  CAS  PubMed  Google Scholar 

  54. Hotchin NA, Kovach NL, Watt FM . Functional down-regulation of alpha 5 beta 1 integrin in keratinocytes is reversible but commitment to terminal differentiation is not. J Cell Sci 1993; 106 (Part 4): 1131–1138.

    CAS  PubMed  Google Scholar 

  55. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  56. Milner LA et al. A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 1994; 83: 2057–2062.

    CAS  PubMed  Google Scholar 

  57. Lowell S et al. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10: 491–500.

    Article  CAS  PubMed  Google Scholar 

  58. Wang XD et al. Notch 1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem 2004; 279: 24733–24744.

    Article  CAS  PubMed  Google Scholar 

  59. Greenberg NM et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nemeth JA et al. Prostatic ductal system in rats: tissue-specific expression and regional variation in stromal distribution of transforming growth factor-beta 1. Prostate 1997; 33: 64–71.

    Article  CAS  PubMed  Google Scholar 

  61. Nemeth JA, Lee C . Prostatic ductal system in rats: regional variation in stromal organization. Prostate 1996; 28: 124–128.

    Article  CAS  PubMed  Google Scholar 

  62. Kundu SD et al. Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)-TGF-beta type II dominant negative receptor. Prostate 2000; 43: 118–124.

    Article  CAS  PubMed  Google Scholar 

  63. Bhowmick NA et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  CAS  PubMed  Google Scholar 

  64. Reed JC . Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hockenbery D et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  CAS  PubMed  Google Scholar 

  66. Krajewski S et al. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 1994; 145: 1323–1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Moul JW et al. Protein expression of p53, bcl-2, and KI-67 (MIB-1) as prognostic biomarkers in patients with surgically treated, clinically localized prostate cancer. Surgery 1996; 120: 159–166, discussion 166–167.

    Article  CAS  PubMed  Google Scholar 

  68. Colombel M et al. Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancers. Am J Pathol 1993; 143: 390–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang A et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  70. Mills AA et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    Article  CAS  PubMed  Google Scholar 

  71. Yang A et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

    Article  CAS  PubMed  Google Scholar 

  72. Signoretti S et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 2000; 157: 1769–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sgambato A et al. Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 2000; 183: 18–27.

    Article  CAS  PubMed  Google Scholar 

  74. Goodell MA et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  75. Terunuma A et al. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol 2003; 121: 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  76. Alvi AJ et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 2003; 5: R1–R8.

    Article  PubMed  Google Scholar 

  77. Bhatt RI et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry 2003; 54A: 89–99.

    Article  Google Scholar 

Download references

Acknowledgements

D Hudson is funded by the Bob Champion Cancer Trust and the NCRI. Thanks to all my past co-authors who contributed to the work described within this review, in particular to John Masters and Adam Guy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Hudson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, D. Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 7, 188–194 (2004). https://doi.org/10.1038/sj.pcan.4500745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500745

Keywords

This article is cited by

Search

Quick links