Semin Liver Dis 2014; 34(04): 363-375
DOI: 10.1055/s-0034-1394137
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Molecular Profiling of Liver Tumors: Classification and Clinical Translation for Decision Making

Roser Pinyol
1   HCC Translational Research Laboratory, Barcelona Clinic Liver Cancer Group (BCLC), Liver Unit, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Catalonia, Spain
,
Jean Charles Nault
2   Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, IUH, Paris, France
3   Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
4   Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, et Université Paris 13, Bobigny, France
,
Iris M. Quetglas
1   HCC Translational Research Laboratory, Barcelona Clinic Liver Cancer Group (BCLC), Liver Unit, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Catalonia, Spain
,
Jessica Zucman-Rossi
2   Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, IUH, Paris, France
3   Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
5   Hopital EGP, AP-HP, Paris, France
,
Josep M. Llovet
1   HCC Translational Research Laboratory, Barcelona Clinic Liver Cancer Group (BCLC), Liver Unit, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Catalonia, Spain
6   Mount Sinai Liver Cancer Program, Icahn School of Medicine at Mount Sinai, Mount Sinai School of Medicine, New York, New York
7   Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
04 November 2014 (online)

Abstract

Hepatocellular carcinoma (HCC) is a complex disease with a dismal prognosis. Consequently, a translational approach is required to personalized clinical decision making to improve survival of HCC patients. Molecular signatures from cirrhotic livers and single nucleotide polymorphism have been linked with HCC occurrence. Identification of high-risk populations will be useful to design chemopreventive trials. In addition, molecular signatures derived from tumor and nontumor samples are associated with early tumor recurrence due to metastasis and late tumor recurrence due to de novo carcinogenesis after curative treatment, respectively. Identification of patients with a high risk of relapse will guide adjuvant randomized trials. The genetic landscape drawn by next-generation sequencing has highlighted the genomic diversity of HCC. Genetic drivers recurrently mutated belong to different signaling pathways including telomere maintenance, cell-cycle regulators, chromatin remodeling, Wnt/b-catenin, RAS/RAF/MAPK kinase, and AKT/mTOR pathway. These cancer genes will be ideally targeted by biotherapies as a paradigm of stratified medicine adapted to tumor biology.

 
  • References

  • 1 Lozano R, Naghavi M, Foreman K , et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859) 2095-2128
  • 2 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59 (4) 225-249
  • 3 El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142 (6) 1264-1273 , e1
  • 4 Bruix J, Sherman M. Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42 (5) 1208-1236
  • 5 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362 (9399) 1907-1917
  • 6 Llovet JM, Ricci S, Mazzaferro V , et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (4) 378-390
  • 7 El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365 (12) 1118-1127
  • 8 Hoshida Y, Villanueva A, Kobayashi M , et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008; 359 (19) 1995-2004
  • 9 Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J Gastroenterol Hepatol 2007; 22 (Suppl. 01) S108-S111
  • 10 Bolondi L, Sofia S, Siringo S , et al. Surveillance programme of cirrhotic patients for early diagnosis and treatment of hepatocellular carcinoma: a cost effectiveness analysis. Gut 2001; 48 (2) 251-259
  • 11 Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 2010; 7 (8) 425-436
  • 12 Hoshida Y, Fuchs BC, Tanabe KK. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Curr Cancer Drug Targets 2012; 12 (9) 1129-1159
  • 13 Wurmbach E, Chen YB, Khitrov G , et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 2007; 45 (4) 938-947
  • 14 Gehrau RC, Archer KJ, Mas VR, Maluf DG. Molecular profiles of HCV cirrhotic tissues derived in a panel of markers with clinical utility for hepatocellular carcinoma surveillance. PLoS ONE 2012; 7 (7) e40275
  • 15 Nam SW, Park JY, Ramasamy A , et al. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology 2005; 42 (4) 809-818
  • 16 Budhu A, Forgues M, Ye Q-H , et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10 (2) 99-111
  • 17 Hoshida Y, Villanueva A, Sangiovanni A , et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology 2013; 144 (5) 1024-1030
  • 18 Kojima K, April C, Canasto-Chibuque C , et al. Transcriptome profiling of archived sectioned formalin-fixed paraffin-embedded (AS-FFPE) tissue for disease classification. PLoS ONE 2014; 9 (1) e86961
  • 19 Karlsen TH, Melum E, Franke A. The utility of genome-wide association studies in hepatology. Hepatology 2010; 51 (5) 1833-1842
  • 20 Stadler ZK, Gallagher DJ, Thom P, Offit K. Genome-wide association studies of cancer: principles and potential utility. Oncology (Williston Park) 2010; 24 (7) 629-637
  • 21 Nahon P, Zucman-Rossi J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J Hepatol 2012; 57 (3) 663-674
  • 22 Abu Dayyeh BK, Yang M, Fuchs BC , et al; HALT-C Trial Group. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology 2011; 141 (1) 141-149
  • 23 Tanabe KK, Lemoine A, Finkelstein DM , et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 2008; 299 (1) 53-60
  • 24 Kumar V, Kato N, Urabe Y , et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet 2011; 43 (5) 455-458
  • 25 Miki D, Ochi H, Hayes CN , et al. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet 2011; 43 (8) 797-800
  • 26 Zhang H, Zhai Y, Hu Z , et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 2010; 42 (9) 755-758
  • 27 Chan KY-K, Wong C-M, Kwan JS-H , et al. Genome-wide association study of hepatocellular carcinoma in southern Chinese patients with chronic hepatitis B virus infection. PLoS ONE 2011; 6 (12) e28798
  • 28 Jiang D-K, Sun J, Cao G , et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet 2013; 45 (1) 72-75
  • 29 European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56 (4) 908-943
  • 30 Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (3) 1020-1022
  • 31 Di Tommaso L, Sangiovanni A, Borzio M, Park YN, Farinati F, Roncalli M. Advanced precancerous lesions in the liver. Best Pract Res Clin Gastroenterol 2013; 27 (2) 269-284
  • 32 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379 (9822) 1245-1255
  • 33 International Consensus Group for Hepatocellular Neoplasia: The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49 (2) 658-664
  • 34 Nault JC, Bioulac-Sage P, Zucman-Rossi J. Hepatocellular benign tumors-from molecular classification to personalized clinical care. Gastroenterology 2013; 144 (5) 888-902
  • 35 Finegold MJ, Geller SA, Gerber MA. International Working Party. Terminology of nodular hepatocellular lesions. Hepatology 1995; 22 (3) 983-993
  • 36 Di Tommaso L, Franchi G, Park YN , et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007; 45 (3) 725-734
  • 37 Tremosini S, Forner A, Boix L , et al. Prospective validation of an immunohistochemical panel (glypican 3, heat shock protein 70 and glutamine synthetase) in liver biopsies for diagnosis of very early hepatocellular carcinoma. Gut 2012; 61 (10) 1481-1487
  • 38 Di Tommaso L, Destro A, Fabbris V , et al. Diagnostic accuracy of clathrin heavy chain staining in a marker panel for the diagnosis of small hepatocellular carcinoma. Hepatology 2011; 53 (5) 1549-1557
  • 39 Paradis V, Bièche I, Dargère D , et al. Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 2003; 163 (2) 733-741
  • 40 Llovet JM, Chen Y, Wurmbach E , et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 2006; 131 (6) 1758-1767
  • 41 Nault JC, Mallet M, Pilati C , et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 2013; 4: 2218
  • 42 Pinyol R, Tovar V, Llovet JM. TERT promoter mutations: gatekeeper and driver of hepatocellular carcinoma. J Hepatol 2014; 61 (3) 685-687
  • 43 Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogenesis. Semin Liver Dis 2011; 31 (2) 173-187
  • 44 Zucman-Rossi J, Jeannot E, Nhieu JT , et al. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 2006; 43 (3) 515-524
  • 45 Van der Borght S, Libbrecht L, Katoonizadeh A , et al. Nuclear beta-catenin staining and absence of steatosis are indicators of hepatocellular adenomas with an increased risk of malignancy. Histopathology 2007; 51 (6) 855-856
  • 46 Pilati C, Letouzé E, Nault J-C , et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 2014; 25 (4) 428-441
  • 47 Villanueva A, Hoshida Y, Toffanin S , et al. New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res 2010; 16 (19) 4688-4694
  • 48 Imamura H, Matsuyama Y, Tanaka E , et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 2003; 38 (2) 200-207
  • 49 Villanueva A, Hoshida Y, Battiston C , et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011; 140 (5) 1501-1512 , e2
  • 50 Nault JC, De Reyniès A, Villanueva A , et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology 2013; 145 (1) 176-187
  • 51 Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 2009; 101 (21) 1446-1452
  • 52 McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics. REporting recommendations for tumour MARKer prognostic studies (REMARK). Eur J Cancer 2005; 41 (12) 1690-1696
  • 53 Hemingway H, Croft P, Perel P , et al; PROGRESS Group. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ 2013; 346: e5595
  • 54 Riley RD, Hayden JA, Steyerberg EW , et al; PROGRESS Group. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med 2013; 10 (2) e1001380
  • 55 Steyerberg EW, Moons KG, van der Windt DA , et al; PROGRESS Group. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013; 10 (2) e1001381
  • 56 Hingorani AD, Windt DA, Riley RD , et al; PROGRESS Group. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ 2013; 346: e5793
  • 57 Lee J-S, Chu I-S, Heo J , et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004; 40 (3) 667-676
  • 58 Boyault S, Rickman DS, de Reyniès A , et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45 (1) 42-52
  • 59 Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 2008; 47 (6) 2059-2067
  • 60 Villanueva A, Chiang DY, Newell P , et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135 (6) 1972-1983 , e1–e11
  • 61 Roessler S, Jia H-L, Budhu A , et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010; 70 (24) 10202-10212
  • 62 van Malenstein H, Gevaert O, Libbrecht L , et al. A seven-gene set associated with chronic hypoxia of prognostic importance in hepatocellular carcinoma. Clin Cancer Res 2010; 16 (16) 4278-4288
  • 63 Kaposi-Novak P, Lee J-S, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006; 116 (6) 1582-1595
  • 64 Lee J-S, Heo J, Libbrecht L , et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12 (4) 410-416
  • 65 Yamashita T, Forgues M, Wang W , et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 2008; 68 (5) 1451-1461
  • 66 Andersen JB, Loi R, Perra A , et al. Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology 2010; 51 (4) 1401-1409
  • 67 Woo HG, Lee JH, Yoon JH , et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res 2010; 70 (8) 3034-3041
  • 68 Durnez A, Verslype C, Nevens F , et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 2006; 49 (2) 138-151
  • 69 Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?. Hepatology 2013; 57 (2) 840-847
  • 70 Jiang J, Gusev Y, Aderca I , et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 2008; 14 (2) 419-427
  • 71 Viswanathan SR, Powers JT, Einhorn W , et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41 (7) 843-848
  • 72 Wei R, Huang GL, Zhang MY , et al. Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clin Cancer Res 2013; 19 (17) 4780-4791
  • 73 Budhu A, Jia H-L, Forgues M , et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47 (3) 897-907
  • 74 Ji J, Shi J, Budhu A , et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361 (15) 1437-1447
  • 75 Singh S, Singh PP, Roberts LR, Sanchez W. Chemopreventive strategies in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2014; 11 (1) 45-54
  • 76 Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res 2014; 20 (8) 2072-2079
  • 77 Cardoso F, Van't Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008; 26 (5) 729-735
  • 78 Baccarani M, Deininger MW, Rosti G , et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013; 122 (6) 872-884
  • 79 Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer 2014; [Epub ahead of print]PubMed
  • 80 Villanueva A, Llovet JM. Liver cancer in 2013: Mutational landscape of HCC—the end of the beginning. Nat Rev Clin Oncol 2014; 11 (2) 73-74
  • 81 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10 (8) 789-799
  • 82 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science 2013; 339 (6127) 1546-1558
  • 83 Guichard C, Amaddeo G, Imbeaud S , et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (6) 694-698
  • 84 Fujimoto A, Totoki Y, Abe T , et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44 (7) 760-764
  • 85 Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2013; 39 (5) 444-456
  • 86 Calvisi DF, Ladu S, Gorden A , et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130 (4) 1117-1128
  • 87 Newell P, Toffanin S, Villanueva A , et al. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 2009; 51 (4) 725-733
  • 88 Tovar V, Alsinet C, Villanueva A , et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol 2010; 52 (4) 550-559
  • 89 Santoro A, Rimassa L, Borbath I , et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol 2013; 14 (1) 55-63
  • 90 Xiang Q, Chen W, Ren M , et al. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clin Cancer Res 2014; 20 (11) 2959-2970
  • 91 Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res 2013; 19 (9) 2310-2318
  • 92 Sawey ET, Chanrion M, Cai C , et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 2011; 19 (3) 347-358
  • 93 Chiang DY, Villanueva A, Hoshida Y , et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68 (16) 6779-6788
  • 94 Fernandez-Banet J, Lee NP, Chan KT , et al. Decoding complex patterns of genomic rearrangement in hepatocellular carcinoma. Genomics 2014; 103 (2-3) 189-203
  • 95 Horwitz E, Stein I, Andreozzi M , et al. Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment. Cancer Discov 2014; 4 (6) 730-743
  • 96 Cheng A-L, Shen Y-C, Zhu AX. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma. Oncology 2011; 81 (5–6) 372-380
  • 97 Lin C-P, Liu C-R, Lee C-N, Chan T-S, Liu HE. Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J Hepatol 2010; 2 (1) 16-20
  • 98 Stefanska B, Cheishvili D, Suderman M , et al. Genome-wide study of hypomethylated and induced genes in liver cancer patients unravels novel anticancer targets. Clin Cancer Res 2014; 20 (12) 3118-3132
  • 99 Mudbhary R, Hoshida Y, Chernyavskaya Y , et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 2014; 25 (2) 196-209
  • 100 Shen Y-C, Lin Z-Z, Hsu C-H, Hsu C, Shao Y-Y, Cheng A-L. Clinical trials in hepatocellular carcinoma: an update. Liver Cancer 2013; 2 (3-4) 345-364
  • 101 Lachenmayer A, Toffanin S, Cabellos L , et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol 2012; 56 (6) 1343-1350
  • 102 Toffanin S, Hoshida Y, Lachenmayer A , et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 2011; 140 (5) 1618-1628 , e16
  • 103 Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12 (11) 847-865
  • 104 Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 2010; 10 (11) 760-774
  • 105 Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 2013; 49 (6) 1297-1304
  • 106 Clifford RJ, Zhang J, Meerzaman DM , et al. Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 2010; 52 (6) 2034-2043
  • 107 Huang J, Deng Q, Wang Q , et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012; 44 (10) 1117-1121
  • 108 Li M, Zhao H, Zhang X , et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 2011; 43 (9) 828-829
  • 109 Cleary SP, Jeck WR, Zhao X , et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 2013; 58 (5) 1693-1702
  • 110 Ahn SM, Jang SJ, Shim JH , et al. A genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 2014; [Epub ahead of print]PubMed
  • 111 Sung W-K, Zheng H, Li S , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012; 44 (7) 765-769
  • 112 Colombino M, Sperlongano P, Izzo F , et al. BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis 2012; 3: e259
  • 113 Jiang J-H, Liu Y-F, Ke A-W , et al. Clinical significance of the ubiquitin ligase UBE3C in hepatocellular carcinoma revealed by exome sequencing. Hepatology 2014; 59 (6) 2216-2227