Planta Med 2007; 73(13): 1331-1357
DOI: 10.1055/s-2007-990242
Review
© Georg Thieme Verlag KG Stuttgart · New York

Inhibition of 5-Lipoxygenase Product Synthesis by Natural Compounds of Plant Origin

Oliver Werz1
  • 1Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
Further Information

Publication History

Received: August 14, 2007 Revised: September 3, 2007

Accepted: September 8, 2007

Publication Date:
16 October 2007 (online)

Abstract

The biosynthesis of leukotrienes (LTs) is initiated by the transformation of free arachidonic acid to LTA4 by 5-lipoxygenase (5-LO). Subsequent enzymatic conversion of LTA4 yields LTB4 and the cysteinyl-LTs C4, D4 and E4. LTs have prominent functions in pathophysiology and are connected to numerous disorders including bronchial asthma, allergic rhinitis, inflammatory bowel and skin diseases, rheumatoid arthritis, cancer, osteoporosis and cardiovascular diseases. Pharmacological and genetic interruption of the 5-LO pathway or blockade of LT receptors, serving as means for intervention with LTs, may be of therapeutic value for certain related disorders. Natural or plant-derived substances were among the first 5-LO inhibitors identified in the early 1980 s. To date, a huge number of diverse plant-derived compounds have been reported to interfere with 5-LO product synthesis. However, many investigations have addressed the efficacy of a given compound solely in cellular test systems and analysis of direct interference with 5-LO has been neglected. In the first part of this review, the biology and molecular pharmacology of the 5-LO pathway is summarized in order to understand its overall regulation and complexity as well as to comprehend the possible points of attack of compounds that eventually lead to inhibition of 5-LO product formation in intact cells. In the second part, natural compounds that interfere with 5-LO product formation are compiled and grouped into structural classes, and the underlying molecular mechanisms and structure-activity relationships are discussed.

Abbreviations

AA:arachidonic acid

CLP:coactosine-like potein

COX:cyclooxygenase

GPCR:G protein-coupled receptor

GPX:glutathione peroxidase

GSH:glutathione

FLAP:5-lipoxygenase-activating protein

H(P)ETE:hydro(pero)xyeicosatetraenoic acid

iNOS:inducible nitric oxide synthase

LO:lipoxygenase

LOOH:lipid hydroperoxide

LT:leukotriene

MAPEG:membrane-associated proteins in eicosanoid and
glutathione metabolism

MAPK:mitogen-activated protein kinase

NDGA:nordihydroguaiaretic acid

NFκB:nuclear factor κB

PAF:platelet-activating factor

fMLP:N-formyl-methionyl-leucyl-phenylalanine

PC:phosphatidylcholine

PL:phospholipase

PK:protein kinase

PMNL:polymorphonuclear leukocytes

PT:pentacylic triterpene

SAR:structure-activity relationships

References

  • 1 Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology.  Science. 2001;  294 1871-5.
  • 2 Werz O. 5-lipoxygenase: cellular biology and molecular pharmacology.  Curr Drug Targets Inflamm Allergy. 2002;  1 23-44.
  • 3 Folco G, Murphy R C. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses.  Pharmacol Rev. 2006;  58 375-88.
  • 4 Serhan C. Lipoxins and aspirin-triggered 15-epi-lipoxins. In: Gallin JL, Syndermann R, editors Inflammation. Basic principles and clinical correlates. Philadelphia; Lipincott Williams & Williams 1999.
  • 5 Claesson H E, Dahlen S E. Asthma and leukotrienes: antileukotrienes as novel anti-asthmatic drugs.  J Intern Med. 1999;  245 205-27.
  • 6 Brink C, Dahlen S E, Drazen J, Evans J F, Hay D W, Nicosia S. et al . International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors.  Pharmacol Rev. 2003;  55 195-227.
  • 7 Kemp J P. Recent advances in the management of asthma using leukotriene modifiers.  Am J Respir Med. 2003;  2 139-56.
  • 8 Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis.  Nature. 1997;  387 620-4.
  • 9 Okuno T, Yokomizo T, Hori T, Miyano M, Shimizu T. Leukotriene B4 receptor and the function of its helix 8.  J Biol Chem. 2005;  280 32 049-52.
  • 10 Brink C, Dahlen S E, Drazen J, Evans J F, Hay D W, Rovati G E. et al . International Union of Pharmacology XLIV. Nomenclature for the oxoeicosanoid receptor.  Pharmacol Rev. 2004;  56 149-57.
  • 11 Powell W S, Rokach J. Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE.  Prog Lipid Res. 2005;  44 154-83.
  • 12 Muro S, Hamid Q, Olivenstein R, Taha R, Rokach J, Powell W S. 5-Oxo-6,8,11,14-eicosatetraenoic acid induces the infiltration of granulocytes into human skin.  J Allergy Clin Immunol. 2003;  112 768-74.
  • 13 Werz O, Steinhilber D. Therapeutic options for 5-lipoxygenase inhibitors.  Pharmacol Ther. 2006;  112 701-18.
  • 14 Garcia C, Boyce B F, Gilles J, Dallas M, Qiao M, Mundy G R. et al . Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo .  J Bone Miner Res. 1996;  11 1619-27.
  • 15 Bonewald L F, Flynn M, Qiao M, Dallas M R, Mundy G R, Boyce B F. Mice lacking 5-lipoxygenase have increased cortical bone thickness.  Adv Exp Med Biol. 1997;  433 299-302.
  • 16 Avis I, Hong S H, Martinez A, Moody T, Choi Y H, Trepel J. et al . Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions.  Faseb J. 2001;  15 2007-9.
  • 17 Romano M, Catalano A, Nutini M, D'Urbano E, Crescenzi C, Claria J. et al . 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor.  Faseb J. 2001;  15 2326-36.
  • 18 Ghosh J, Myers C E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells.  Proc Natl Acad Sci U S A. 1998;  95 13 182-7.
  • 19 Mehrabian M, Allayee H. 5-Lipoxygenase and atherosclerosis.  Curr Opin Lipidol. 2003;  14 447-57.
  • 20 Funk C D. Leukotriene modifiers as potential therapeutics for cardiovascular disease.  Nat Rev Drug Discov. 2005;  4 664-72.
  • 21 Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity.  Trends Biochem Sci. 2007;  32 332-41.
  • 22 Steinhilber D. 5-Lipoxygenase: a target for anti-inflammatory drugs revisited.  Curr Med Chem. 1999;  6 69-83.
  • 23 Werz O, Tretiakova I, Michel A, Ulke-Lemee A, Hornig M, Franke L. et al . Caspase-mediated degradation of human 5-lipoxygenase in B lymphocytic cells.  Proc Natl Acad Sci U S A. 2005;  102 13 164-9.
  • 24 Werz O, Steinhilber D. Development of 5-lipoxygenase inhibitors - lessons from cellular enzyme regulation.  Biochem Pharmacol. 2005;  70 327-33.
  • 25 Hammarberg T, Provost P, Persson B, Rådmark O. The N-terminal domain of 5-lipoxygenase binds calcium and mediates calcium stimulation of enzyme activity.  J Biol Chem. 2000;  275 38 787-93.
  • 26 Hemak J, Gale D, Brock T G. Structural characterization of the catalytic domain of the human 5-lipoxygenase enzyme.  J Mol Model. 2002;  8 102-12.
  • 27 Allard J B, Brock T G. Structural organization of the regulatory domain of human 5-lipoxygenase.  Curr Protein Pept Sci. 2005;  6 125-31.
  • 28 Rådmark O. Arachidonate 5-lipoxygenase.  J Lipid Mediat Cell. 1995;  12 171-84.
  • 29 Hornig C, Albert D, Fischer L, Hornig M, Rådmark O, Steinhilber D. et al . 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain.  J Biol Chem. 2005;  280 26 913-21.
  • 30 Kulkarni S, Das S, Funk C D, Murray D, Cho W. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.  J Biol Chem. 2002;  277 13 167-74.
  • 31 Rådmark O, Samuelsson B. Regulation of 5-lipoxygenase enzyme activity.  Biochem Biophys Res Commun. 2005;  338 102-10.
  • 32 Chen X S, Funk C D. The N-terminal ”beta-barrel” domain of 5-lipoxygenase is essential for nuclear membrane translocation.  J Biol Chem. 2001;  276 811-8.
  • 33 Brock T G. Regulating leukotriene synthesis: the role of nuclear 5-lipoxygenase.  J Cell Biochem. 2005;  96 1203-11.
  • 34 Gijon M A, Leslie C C. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation.  J Leukoc Biol. 1999;  65 330-6.
  • 35 Hamasaki Y, Kobayashi I, Zaitu M, Tsuji K, Kita M, Hayasaki R. et al . Magnolol inhibits leukotriene synthesis in rat basophilic leukemia-2H3 cells.  Planta Med. 1999;  65 222-6.
  • 36 Ferrandiz M L, Gil B, Sanz M J, Ubeda A, Erazo S, Gonzalez E. et al . Effect of bakuchiol on leukocyte functions and some inflammatory responses in mice.  J Pharm Pharmacol. 1996;  48 975-80.
  • 37 Cabre F, Carabaza A, Suesa N, Garcia A M, Rotllan E, Gomez M. et al . Effect of manoalide on human 5-lipoxygenase activity.  Inflamm Res. 1996;  45 218-23.
  • 38 Benrezzouk R, Terencio M C, Ferrandiz M L, San Feliciano A, Gordaliza M, Miguel del Corral J M. et al . Inhibition of human sPLA2 and 5-lipoxygenase activities by two neo-clerodane diterpenoids.  Life Sci. 1999;  64 PL205-11.
  • 39 Hong J, Bose M, Ju J, Ryu J H, Chen X, Sang S. et al . Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase.  Carcinogenesis. 2004;  25 1671-9.
  • 40 Son J K, Son M J, Lee E, Moon T C, Son K H, Kim C H. et al . Ginkgetin, a biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.  Biol Pharm Bull. 2005;  28 2181-4.
  • 41 Lombardo D, Dennis E A. Cobra venom phospholipase A2 inhibition by manoalide. A novel type of phospholipase inhibitor.  J Biol Chem. 1985;  260 7234-40.
  • 42 De Vries G W, Amdahl L, Mobasser A, Wenzel M, Wheeler L A. Preferential inhibition of 5-lipoxygenase activity by manoalide.  Biochem Pharmacol. 1988;  37 2899-905.
  • 43 McColl S R, Krump E, Naccache P H, Poubelle P E, Braquet P, Braquet M. et al . Granulocyte-macrophage colony-stimulating factor increases the synthesis of leukotriene B4 by human neutrophils in response to platelet-activating factor. Enhancement of both arachidonic acid availability and 5-lipoxygenase activation.  J Immunol. 1991;  146 1204-11.
  • 44 Peters-Golden M, Brock T G. 5-lipoxygenase and FLAP.  Prostaglandins Leukot Essent Fatty Acids. 2003;  69 99-109.
  • 45 Luo M, Jones S M, Peters-Golden M, Brock T G. Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity.  Proc Natl Acad Sci U S A. 2003;  100 12 165-70.
  • 46 Wube A A, Bucar F, Asres K, Gibbons S, Adams M, Streit B. et al . Knipholone, a selective inhibitor of leukotriene metabolism.  Phytomedicine. 2006;  13 452-6.
  • 47 Lepley R A, Muskardin D T, Fitzpatrick F A. Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase.  J Biol Chem. 1996;  271 6179-84.
  • 48 Burkert E, Arnold C, Hammarberg T, Rådmark O, Steinhilber D, Werz O. The C2-like beta-barrel domain mediates the Ca2+-dependent resistance of 5-lipoxygenase activity against inhibition by glutathione peroxidase-1.  J Biol Chem. 2003;  278 42 846-53.
  • 49 Lee S H, Son M J, Ju H K, Lin C X, Moon T C, Choi H G. et al . Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin in mouse bone marrow-derived mast cells.  Biol Pharm Bull. 2004;  27 786-8.
  • 50 Chao Y Y, Su W, Jan C R, Ko Y C, Chen J J, Cheng J S. et al . Novel action of lignans isolated from Hernandia nymphaeifolia on Ca2+ signaling in human neutrophils.  Arch Toxicol. 2002;  75 695-702.
  • 51 Ko F N, Wu T S, Liou M J, Huang T F, Teng C M. Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens .  Eur J Pharmacol. 1992;  219 29-34.
  • 52 Liu J H, Zschocke S, Reininger E, Bauer R. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase.  Planta Med. 1998;  64 525-9.
  • 53 Resch M, Steigel A, Chen Z L, Bauer R. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea .  J Nat Prod. 1998;  61 347-50.
  • 54 Werz O, Burkert E, Fischer L, Szellas D, Dishart D, Samuelsson B. et al . Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes.  Faseb J. 2002;  16 1441-3.
  • 55 Werz O, Szellas D, Steinhilber D, Rådmark O. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2).  J Biol Chem. 2002;  277 14 793-800.
  • 56 Werz O, Klemm J, Samuelsson B, Rådmark O. 5-Lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases.  Proc Natl Acad Sci U S A. 2000;  97 5261-6.
  • 57 Luo M, Jones S M, Phare S M, Coffey M J, Peters-Golden M, Brock T G. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523.  J Biol Chem. 2004;  279 41 512-20.
  • 58 Cho S Y, Park S J, Kwon M J, Jeong T S, Bok S H, Choi W Y. et al . Quercetin suppresses proinflammatory cytokines production through MAP kinases andNF-kappaB pathway in lipopolysaccharide-stimulated macrophage.  Mol Cell Biochem. 2003;  243 153-60.
  • 59 Wadsworth T L, McDonald T L, Koop D R. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-alpha.  Biochem Pharmacol. 2001;  62 963-74.
  • 60 Dell'Agli M, Galli G V, Bosisio E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba .  Planta Med. 2006;  72 468-70.
  • 61 Penning T D. Inhibitors of leukotriene A4 (LTA4) hydrolase as potential anti-inflammatory agents.  Curr Pharm Des. 2001;  7 163-79.
  • 62 Tornhamre S, Schmidt T J, Nasman-Glaser B, Ericsson I, Lindgren J A. Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C(4) synthase in human blood cells.  Biochem Pharmacol. 2001;  62 903-11.
  • 63 Mansour M, Tornhamre S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone.  J Enzyme Inhib Med Chem. 2004;  19 431-6.
  • 64 Orning L, Hammarstrom S. Inhibition of leukotriene C and leukotriene D biosynthesis.  J Biol Chem. 1980;  255 8023-6.
  • 65 Bokoch G M, Reed P W. Evidence for inhibition of leukotriene A4 synthesis by 5,8,11,14-eicosatetraynoic acid in guinea pig polymorphonuclear leukocytes.  J Biol Chem. 1981;  256 4156-9.
  • 66 Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F. et al . Role of cytosolic phospholipase A(2) in allergic response and parturition.  Nature. 1997;  390 618-22.
  • 67 Yoshimoto T, Yokoyama C, Ochi K, Yamamoto S, Maki Y, Ashida Y. et al . 2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis.  Biochim Biophys Acta. 1982;  713 470-3.
  • 68 Ford-Hutchinson A W, Gresser M, Young R N. 5-Lipoxygenase.  Annu Rev Biochem. 1994;  63 383-417.
  • 69 McMillan R M, Walker E RH. Designing therapeutically effective 5-lipoxygenase inhibitors.  Trends Pharmacol Sci. 1992;  13 323-30.
  • 70 Carter G W, Young P R, Albert D H, Bouska J, Dyer R, Bell R L. et al . 5-Lipoxygenase inhibitory activity of zileuton.  J Pharmacol Exp Ther. 1991;  256 929-37.
  • 71 Tateson J E, Randall R W, Reynolds C H, Jackson W P, Bhattacherjee P, Salmon J A. et al . Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: biochemical assessment in vitro and ex vivo .  Br J Pharmacol. 1988;  94 528-39.
  • 72 Drazen J M. Asthma therapy with agents preventing leukotriene synthesis or action.  Proc Assoc Am Physicians. 1999;  111 547-59.
  • 73 Weinblatt M E, Kremer J M, Coblyn J S, Helfgott S, Maier A L, Petrillo G. et al . Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis.  J Rheumatol. 1992;  19 1537-41.
  • 74 Werz O, Szellas D, Henseler M, Steinhilber D. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity.  Mol Pharmacol. 1998;  54 445-51.
  • 75 Fischer L, Szellas D, Radmark O, Steinhilber D, Werz O. Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors.  Faseb J. 2003;  17 949-51.
  • 76 Fischer L, Steinhilber D, Werz O. Molecular pharmacological profile of the non-redox-type 5-lipoxygenase inhibitor CJ-13,610.  Br J Pharmacol. 2004;  142 861-8.
  • 77 Werz O, Steinhilber D. Pharmacological intervention with 5-lipoxygenase: new insights and novel compounds.  Exp Opin Ther Patents. 2005;  15 505-19.
  • 78 Laufer S, Tries S, Augustin J, Dannhardt G. Pharmacological profile of a new pyrrolizine derivative inhibiting the enzymes cyclo-oxygenase and 5-lipoxygenase.  Arzneimittelforschung. 1994;  44 629-36.
  • 79 Qian C, Hwang S B, Libertine-Garahan L, Eckman J B, Cai X, Scannell R T. et al . Anti-inflammatory activities of LDP-392, a dual PAF receptor antagonist and 5-lipoxygenase inhibitor.  Pharmacol Res. 2001;  44 213-20.
  • 80 Lewis T A, Bayless L, Dipesa A J, Eckman J B, Gillard M, Libertine L. et al . 5-Lipoxygenase inhibition by N-hydroxycarbamates in dual-function compounds.  Bioorg Med Chem Lett. 2005;  15 1083-5.
  • 81 Lewis T A, Bayless L, Eckman J B, Ellis J L, Grewal G, Libertine L. et al . 5-Lipoxygenase inhibitors with histamine H(1) receptor antagonist activity.  Bioorg Med Chem Lett. 2004;  14 2265-8.
  • 82 Dixon R AF, Diehl R E, Opas E, Rands E, Vickers P J, Evans J F. et al . Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis.  Nature. 1990;  343 282-4.
  • 83 Byrum R S, Goulet J L, Griffiths R J, Koller B H. Role of the 5-lipoxygenase-activating protein (FLAP) in murine acute inflammatory responses.  J Exp Med. 1997;  185 1065-75.
  • 84 Gillard J, Ford-Hutchinson A W, Chan C, Charleson S, Denis D, Foster A. et al . L-663,536 (MK-886) (3-(1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor.  Can J Physiol Pharmacol. 1989;  67 456-64.
  • 85 Depre M, Friedman B, Tanaka W, Van Hecken A, Buntinx A, DeSchepper P J. Biochemical activity, pharmacokinetics, and tolerability of MK-886, a leukotriene biosynthesis inhibitor, in humans.  Clin Pharmacol Ther. 1993;  53 602-7.
  • 86 Fruchtmann R, Mohrs K H, Hatzelmann A, Raddatz S, Fugmann B, Junge B. et al . In vitro pharmacology of BAY X1005, a new inhibitor of leukotriene synthesis.  Agents Actions. 1993;  38 188-95.
  • 87 Brideau C, Chan C, Charleson S, Denis D, Evans J F, Ford-Hutchinson A W. et al . Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-indol-2-yl]-2,2-dimethylpropanoic acid), a potent, orally active leukotriene biosynthesis inhibitor.  Can J Physiol Pharmacol. 1992;  70 799-807.
  • 88 Charleson S, Evans J F, Leger S, Perrier H, Prasit P, Wang Z Y. et al . Structural requirements for the binding of fatty acids to 5-lipoxygenase-activating protein.  Eur J Pharmacol Mol Pharm. 1994;  267 275-80.
  • 89 Koshihara Y, Neichi T, Murota S, Lao A, Fujimoto Y, Tatsuno T. Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants, Artemisia rubripes Nakai.  FEBS Lett. 1983;  158 41-4.
  • 90 Neichi T, Koshihara Y, Murota S. Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis.  Biochim Biophys Acta. 1983;  753 130-2.
  • 91 Yoshimoto T, Furukawa M, Yamamoto S, Horie T, Watanabe-Kohno S. Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase.  Biochem Biophys Res Commun. 1983;  116 612-8.
  • 92 Kuhl P, Shiloh R, Jha H, Murawski U, Zilliken F. 6,7,4′-Trihydroxyisoflavan: a potent and selective inhibitor of 5-lipoxygenase in human and porcine peripheral blood leukocytes.  Prostaglandins. 1984;  28 783-804.
  • 93 Kimura Y, Okuda H, Arichi S. Effects of stilbenes on arachidonate metabolism in leukocytes.  Biochim Biophys Acta. 1985;  834 275-8.
  • 94 Yoon J H, Baek S J. Molecular targets of dietary polyphenols with anti-inflammatory properties.  Yonsei Med J. 2005;  46 585-96.
  • 95 Kuhnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition.  World Rev Nutr Diet. 1976;  24 117-91.
  • 96 Rahman I, Biswas S K, Kirkham P A. Regulation of inflammation and redox signaling by dietary polyphenols.  Biochem Pharmacol. 2006;  72 1439-52.
  • 97 Kim H P, Son K H, Chang H W, Kang S S. Anti-inflammatory plant flavonoids and cellular action mechanisms.  J Pharmacol Sci. 2004;  96 229-45.
  • 98 Butenko I G, Gladtchenko S V, Galushko S V. Anti-inflammatory properties and inhibition of leukotriene C4 biosynthesis in vitro by flavonoid baicalein from Scutellaria baicalensis georgy roots.  Agents Actions. 1993;  39 C49-51.
  • 99 Hiermann A, Schramm H W, Laufer S. Anti-inflammatory activity of myricetin-3-O-beta-D-glucuronide and related compounds.  Inflamm Res. 1998;  47 421-7.
  • 100 Ferrandiz M L, Alcaraz M J. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids.  Agents Actions. 1991;  32 283-8.
  • 101 Kim H R, Pham H T, Ziboh V A. Flavonoids differentially inhibit guinea pig epidermal cytosolic phospholipase A2.  Prostaglandins Leukot Essent Fatty Acids. 2001;  65 281-6.
  • 102 Chang H W, Baek S H, Chung K W, Son K H, Kim H P, Kang S S. Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone.  Biochem Biophys Res Commun. 1994;  205 843-9.
  • 103 Kwak W J, Moon T C, Lin C X, Rhyn H G, Jung H, Lee E. et al . Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity.  Biol Pharm Bull. 2003;  26 299-302.
  • 104 Fawzy A A, Vishwanath B S, Franson R C. Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action.  Agents Actions. 1988;  25 394-400.
  • 105 Chi Y S, Jong H G, Son K H, Chang H W, Kang S S, Kim H P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases.  Biochem Pharmacol. 2001;  62 1185-91.
  • 106 Bas E, Recio M C, Giner R M, Manez S, Cerda-Nicolas M, Rios J L. Anti-inflammatory activity of 5-O-demethylnobiletin, a polymethoxyflavone isolated from Sideritis tragoriganum .  Planta Med. 2006;  72 136-42.
  • 107 Sies H, Schewe T, Heiss C, Kelm M. Cocoa polyphenols and inflammatory mediators.  Am J Clin Nutr. 2005;  81 304S-12S.
  • 108 Odontuya G, Hoult J R, Houghton P J. Structure-activity relationship for anti-inflammatory effect of luteolin and its derived glycosides.  Phytother Res. 2005;  19 782-6.
  • 109 Laughton M J, Evans P J, Moroney M A, Hoult J R, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability.  Biochem Pharmacol. 1991;  42 1673-81.
  • 110 Riendeau D, Falgueyret J P, Nathaniel D J, Rokach J, Ueda N, Yamamoto S. Sensitivity of immunoaffinity-purified porcine 5-lipoxygenase to inhibitors and activating lipid hydroperoxides.  Biochem Pharmacol. 1989;  38 2313-21.
  • 111 Prasad N S, Raghavendra R, Lokesh B R, Naidu K A. Spice phenolics inhibit human PMNL 5-lipoxygenase.  Prostaglandins Leukot Essent Fatty Acids. 2004;  70 521-8.
  • 112 Reddy G R, Ueda N, Hada T, Sackeyfio A C, Yamamoto S, Hano Y. et al . A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor.  Biochem Pharmacol. 1991;  41 115-8.
  • 113 Njamen D, Mbafor J T, Fomum Z T, Kamanyi A, Mbanya J C, Recio M C. et al . Anti-inflammatory activities of two flavanones, sigmoidin A and sigmoidin B, from Erythrina sigmoidea .  Planta Med. 2004;  70 104-7.
  • 114 Schramm D D, Wang J F, Holt R R, Ensunsa J L, Gonsalves J L, Lazarus S A. et al . Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells.  Am J Clin Nutr. 2001;  73 36-40.
  • 115 Flynn D L, Rafferty M F, Boctor A M. Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds.  Prostaglandins Leukot Med. 1986;  24 195-8.
  • 116 Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids.  Chem Pharm Bull (Tokyo). 1992;  40 387-91.
  • 117 Miller D K, Sadowski S, Han G Q, Joshua H. Identification and isolation of medicarpin and a substituted benzofuran as potent leukotriene inhibitors in an anti-inflammatory Chinese herb.  Prostaglandins Leukot Essent Fatty Acids. 1989;  38 137-43.
  • 118 Resch M, Heilmann J, Steigel A, Bauer R. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity.  Planta Med. 2001;  67 437-42.
  • 119 Albert D, Zundorf I, Dingermann T, Muller W E, Steinhilber D, Werz O. Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase.  Biochem Pharmacol. 2002;  64 1767-75.
  • 120 Koshihara Y, Fujimoto Y, Inoue H. A new 5-lipoxygenase selective inhibitor derived from Artocarpus communis strongly inhibits arachidonic acid-induced ear edema.  Biochem Pharmacol. 1988;  37 2161-5.
  • 121 Prieto J M, Giner R M, Recio Mf M C, Schinella G, Manez S, Rios J L. Diphyllin acetylapioside, a 5-lipoxygenase inhibitor from Haplophyllum hispanicum .  Planta Med. 2002;  68 359-60.
  • 122 Kohyama N, Nagata T, Fujimoto S, Sekiya K. Inhibition of arachidonate lipoxygenase activities by 2-(3,4-dihydroxyphenyl)ethanol, a phenolic compound from olives.  Biosci Biotechnol Biochem. 1997;  61 347-50.
  • 123 de la Puerta R, Ruiz Gutierrez V, Hoult J R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil.  Biochem Pharmacol. 1999;  57 445-9.
  • 124 Wagner H, Breu W, Willer F, Wierer M, Remiger P, Schwenker G. In vitro inhibition of arachidonate metabolism by some alkamides and prenylated phenols.  Planta Med. 1989;  55 566-7.
  • 125 Feisst C, Albert D, Verotta L, Werz O. Evaluation of hyperforin analogues for inhibition of 5-lipoxygenase.  Med Chem. 2005;  1 287-91.
  • 126 Feisst C, Franke L, Appendino G, Werz O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds.  J Pharmacol Exp Ther. 2005;  315 389-96.
  • 127 Sud'ina G F, Mirzoeva O K, Pushkareva M A, Korshunova G A, Sumbatyan N V, Varfolomeev S D. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties.  FEBS Lett. 1993;  329 21-4.
  • 128 Du L, Zhang Z, Luo X, Chen K, Shen X, Jiang H. Binding investigation of human 5-lipoxygenase with its inhibitors by SPR technology correlating with molecular docking simulation.  J Biochem (Tokyo). 2006;  139 715-23.
  • 129 Ammon H P, Anazodo M I, Safayhi H, Dhawan B N, Srimal R C. Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL).  Planta Med. 1992;  58 226.
  • 130 Njamen D, Talla E, Mbafor J T, Fomum Z T, Kamanyi A, Mbanya J C. et al . Anti-inflammatory activity of erycristagallin, a pterocarpene from Erythrina mildbraedii .  Eur J Pharmacol. 2003;  468 67-74.
  • 131 Kimura Y, Okuda H, Kubo M. Effects of stilbenes isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes.  J Ethnopharmacol. 1995;  45 131-9.
  • 132 Egan D, O'Kennedy R, Moran E, Cox D, Prosser E, Thornes R D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds.  Drug Metab Rev. 1990;  22 503-29.
  • 133 Hoult J R, Paya M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential.  Gen Pharmacol. 1996;  27 713-22.
  • 134 Fylaktakidou K C, Hadjipavlou-Litina D J, Litinas K E, Nicolaides D N. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities.  Curr Pharm Des. 2004;  10 3813-33.
  • 135 Kimura Y, Okuda H, Arichi S, Baba K, Kozawa M. Inhibition of the formation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid from arachidonic acid in polymorphonuclear leukocytes by various coumarins.  Biochim Biophys Acta. 1985;  834 224-9.
  • 136 Hoult J R, Forder R A, de las Heras B, Lobo I B, Paya M. Inhibitory activity of a series of coumarins on leukocyte eicosanoid generation.  Agents Actions. 1994;  42 44-9.
  • 137 Wagner H, Fessler B. In vitro 5-lipoxygenase inhibition by Eclipta alba extracts and the coumestan derivative wedelolactone.  Planta Med. 1986;  52 374-7.
  • 138 Hiermann A, Schantl D. Antiphlogistic and antipyretic activity of Peucedanum ostruthium .  Planta Med. 1998;  64 400-3.
  • 139 Abad M J, de las Heras B, Silvan A M, Pascual R, Bermejo P, Rodriquez B. et al . Effects of furocoumarins from Cachrys trifida on some macrophage functions.  J Pharm Pharmacol. 2001;  53 1163-8.
  • 140 Ohkawa S, Terao T, Murakami M, Matsumoto T, Goto G. Reduction of 2,3,5-trimethyl-6-(3-pyridylmethyl)-1,4-benzoquinone by PB-3c cells and biological activity of its hydroquinone.  Chem Pharm Bull (Tokyo). 1991;  39 917-21.
  • 141 Reddanna P, Rao M K, Reddy C C. Inhibition of 5-lipoxygenase by vitamin E.  FEBS Lett. 1985;  193 39-43.
  • 142 Fukuyama Y, Kiriyama Y, Okino J, Kodama M, Iwaki H, Hosozawa S. et al . Naturally occurring 5-lipoxygenase inhibitor. II. Structures and syntheses of ardisianones A and B, and maesanin, alkenyl-1,4-benzoquinones from the rhizome of Ardisia japonica .  Chem Pharm Bull (Tokyo). 1993;  41 561-5.
  • 143 Abourashed E A, Muhammad I, Resch M, Bauer R, el-Feraly F S, Hufford C D. Inhibitory effects of maesanin and analogs on arachidonic acid metabolizing enzymes.  Planta Med. 2001;  67 360-1.
  • 144 Fukuyama Y, Kiriyama Y, Kodama M, Iwaki H, Hosozawa S, Aki S. et al . Naturally occurring 5-lipoxygenase inhibitors. VI. Structures of ardisiaquinones D, E, and F from Ardisia sieboldii .  Chem Pharm Bull (Tokyo). 1995;  43 1391-4.
  • 145 Fukuyama Y, Kiriyama Y, Kodama M, Iwaki H, Hosozawa S, Aki S. et al . Total synthesis of ardisiaquinone A, a potent 5-lipoxygenase inhibitor, isolated from Ardisia sieboldii, and degree of 5-lipoxygenase inhibitory activity of its derivatives.  Chem Pharm Bull (Tokyo). 1994;  42 2211-3.
  • 146 Fukuishi N, Takada T, Fukuyama Y, Akagi M. Antiallergic effect of ardisiaquinone A, a potent 5-lipoxygenase inhibitor.  Phytomedicine. 2001;  8 460-4.
  • 147 Tziveleka L A, Abatis D, Paulus K, Bauer R, Vagias C, Roussis V. Marine polyprenylated hydroquinones, quinones, and chromenols with inhibitory effects on leukotriene formation.  Chem Biodivers. 2005;  2 901-9.
  • 148 Houghton P J, Zarka R, de las Heras B, Hoult J R. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation.  Planta Med. 1995;  61 33-6.
  • 149 El-Dakhakhny M, Madi N J, Lembert N, Ammon H P. Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats.  J Ethnopharmacol. 2002;  81 161-4.
  • 150 Benrezzouk R, Terencio M C, Ferrandiz M L, Hernandez-Perez M, Rabanal R, Alcaraz M J. Inhibition of 5-lipoxygenase activity by the natural anti-inflammatory compound aethiopinone.  Inflamm Res. 2001;  50 96-101.
  • 151 Matsui N, Fukuishi N, Fukuyama Y, Yasui Y, Akagi M. Protective effect of the 5-lipoxygenase inhibitor ardisiaquinone A on hepatic ischemia-reperfusion injury in rats.  Planta Med. 2005;  71 717-20.
  • 152 Safayhi H, Sailer E R. Anti-inflammatory actions of pentacyclic triterpenes.  Planta Med. 1997;  63 487-93.
  • 153 Ammon H P. Boswellic acids in chronic inflammatory diseases.  Planta Med. 2006;  72 1100-16.
  • 154 Safayhi H, Sailer E R, Ammon H P. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid.  Mol Pharmacol. 1995;  47 1212-6.
  • 155 Sailer E R, Schweizer S, Boden S E, Ammon H P, Safayhi H. Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling.  Eur J Biochem. 1998;  256 364-8.
  • 156 Poeckel D, Werz O. Boswellic acids: Pharmacological actions and molecular targets.  Curr Med Chem. 2006;  28 3359-69.
  • 157 Altmann A, Poeckel D, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes.  Br J Pharmacol. 2004;  141 223-32.
  • 158 Safayhi H, Mack T, Sabieraj J, Anazodo M I, Subramanian L R, Ammon H P. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase.  J Pharmacol Exp Ther. 1992;  261 1143-6.
  • 159 Werz O, Schneider N, Brungs M, Sailer E R, Safayhi H, Ammon H PT. et al . A test system for leukotriene synthesis inhibitors based on the in-vitro differentiation of the human leukemic cell lines HL-60 and Mono Mac 6.  Naunyn Schmiedebergs Arch Pharmacol. 1997;  356 441-5.
  • 160 Boden S E, Schweizer S, Bertsche T, Dufer M, Drews G, Safayhi H. Stimulation of leukotriene synthesis in intact polymorphonuclear cells by the 5-lipoxygenase inhibitor 3-oxo-tirucallic acid.  Mol Pharmacol. 2001;  60 267-73.
  • 161 Moon T C, Lin C X, Lee J S, Kim D S, Bae K, Son K H. et al . Anti-inflammatory activity of astilbic acid from Astilbe chinensis .  Biol Pharm Bull. 2005;  28 24-6.
  • 162 Giner-Larza E M, Manez S, Giner R M, Recio M C, Prieto J M, Cerda-Nicolas M. et al . Anti-inflammatory triterpenes from Pistacia terebinthus galls.  Planta Med. 2002;  68 311-5.
  • 163 Giner-Larza E M, Manez S, Recio M C, Giner R M, Prieto J M, Cerda-Nicolas M. et al . Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity.  Eur J Pharmacol. 2001;  428 137-43.
  • 164 Diaz A M, Abad M J, Fernandez L, Recuero C, Villaescusa L, Silvan A M. et al . In vitro anti-inflammatory activity of iridoids and triterpenoid compounds isolated from Phillyrea latifolia L.  Biol Pharm Bull. 2000;  23 1307-13.
  • 165 Ulusu N N, Ercil D, Sakar M K, Tezcan E F. Abietic acid inhibits lipoxygenase activity.  Phytother Res. 2002;  16 88-90.
  • 166 Sailer E R, Subramanian L R, Rall B, Hoernlein R F, Ammon H P, Safayhi H. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity.  Br J Pharmacol. 1996;  117 615-8.
  • 167 Poeckel D, Tausch L, Kather N, Jauch J, Werz O. Boswellic acids stimulate arachidonic acid release and 12-lipoxygenase activity in human platelets independent of Ca2+ and differentially interact with platelet-type 12-lipoxygenase.  Mol Pharmacol. 2006;  70 1071-8.
  • 168 Poeckel D, Tausch L, George S, Jauch J, Werz O. 3-O-Acetyl-11-keto-boswellic acid decreases basal intracellular Ca2+ levels and inhibits agonist-induced Ca2+ mobilization and mitogen-activated protein kinase activation in human monocytic cells.  J Pharmacol Exp Ther. 2006;  316 224-32.
  • 169 Poeckel D, Tausch L, Altmann A, Feisst C, Klinkhardt U, Graff J. et al . Induction of central signalling pathways and select functional effects in human platelets by beta-boswellic acid.  Br J Pharmacol. 2005;  146 514-24.
  • 170 Merfort I. Arnica: new insights on the molecular mode of action of a traditional medicinal plant.  Forsch Komplementarmed Klass Naturheilkd. 2003;  10 Suppl 1 45-8.
  • 171 Zhang S, Won Y K, Ong C N, Shen H M. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms.  Curr Med Chem Anticancer Agents. 2005;  5 239-49.
  • 172 Rekka E A, Kourounakis A P, Kourounakis P N. Investigation of the effect of chamazulene on lipid peroxidation and free radical processes.  Res Commun Mol Pathol Pharmacol. 1996;  92 361-4.
  • 173 Safayhi H, Sabieraj J, Sailer E R, Ammon H P. Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation.  Planta Med. 1994;  60 410-3.
  • 174 Abe M, Ozawa Y, Uda Y, Morimitsu Y, Nakamura Y, Osawa T. A novel labdane-type trialdehyde from myoga (Zingiber mioga Roscoe) that potently inhibits human platelet aggregation and human 5-lipoxygenase.  Biosci Biotechnol Biochem. 2006;  70 2494-500.
  • 175 Feisst C, Albert D, Steinhilber D, Werz O. The aminosteroid phospholipase C antagonist U-73 122 (1-[6-[[17-beta-3-methoxyestra-1,3,5 (10)-trien-17-yl]amino]hexyl]-1H-pyrro le-2,5-dione) potently inhibits human 5-lipoxygenase in vivo and in vitro .  Mol Pharmacol. 2005;  67 1751-7.
  • 176 Sumner H, Salan U, Knight D W, Hoult J R. Inhibition of 5-lipoxygenase and cyclo-oxygenase in leukocytes by feverfew. Involvement of sesquiterpene lactones and other components.  Biochem Pharmacol. 1992;  43 2313-20.
  • 177 Liao Y H, Houghton P J, Hoult J R. Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation.  J Nat Prod. 1999;  62 1241-5.
  • 178 Ben-Chetrit E, Levy M. Colchicine: 1998 update.  Semin Arthritis Rheum. 1998;  28 48-59.
  • 179 Reibman J, Haines K A, Rich A M, Cristello P, Giedd K N, Weissmann G. Colchicine inhibits ionophore-induced formation of leukotriene B4 by human neutrophils: the role of microtubules.  J Immunol. 1986;  136 1027-32.
  • 180 Peters-Golden M, McNish R W, Davis J A, Blackwood R A, Brock T G. Colchicine inhibits arachidonate release and 5-lipoxygenase action in alveolar macrophages.  Am J Physiol. 1996;  271 L1004-13.
  • 181 Vavreckova C, Gawlik I, Muller K. Benzophenanthridine alkaloids of Chelidonium majus; I. Inhibition of 5- and 12-lipoxygenase by a non-redox mechanism.  Planta Med. 1996;  62 397-401.
  • 182 Choi Y H, Shin E M, Kim Y S, Cai X F, Lee J J, Kim H P. Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms.  Arch Pharm Res. 2006;  29 293-7.
  • 183 Adams M, Kunert O, Haslinger E, Bauer R. Inhibition of leukotriene biosynthesis by quinolone alkaloids from the fruits of Evodia rutaecarpa .  Planta Med. 2004;  70 904-8.
  • 184 Danz H, Stoyanova S, Thomet O A, Simon H U, Dannhardt G, Ulbrich H. et al . Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.  Planta Med. 2002;  68 875-80.
  • 185 Molina P, Tarraga A, Gonzalez-Tejero A, Rioja I, Ubeda A, Terencio M C. et al . Inhibition of leukocyte functions by the alkaloid isaindigotone from Isatis indigotica and some new synthetic derivatives.  J Nat Prod. 2001;  64 1297-300.
  • 186 Micallef M J, Iwaki K, Ishihara T, Ushio S, Aga M, Kunikata T. et al . The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice.  Int Immunopharmacol. 2002;  2 565-78.
  • 187 Recio M C, Cerda-Nicolas M, Potterat O, Hamburger M, Rios J L. Anti-inflammatory and antiallergic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin.  Planta Med. 2006;  72 539-46.
  • 188 Salari H, Braquet P, Borgeat P. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets.  Prostaglandins Leukot Med. 1984;  13 53-60.
  • 189 Vanderhoek J Y, Bryant R W, Bailey J M. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid.  J Biol Chem. 1980;  255 10 064-6.
  • 190 Vanderhoek J Y, Bryant R W, Bailey J M. Regulation of leukocyte and platelet lipoxygenases by hydroxyeicosanoids.  Biochem Pharmacol. 1982;  31 3463-7.
  • 191 Arai Y, Shimoji K, Konno M, Konishi Y, Okuyama S, Iguchi S. et al . Synthesis and 5-lipoxygenase inhibitory activities of eicosanoid compounds.  J Med Chem. 1983;  26 72-8.
  • 192 Koshishara Y, Murota S, Petasis N A, Nicolaou K C. Selective inhibition of 5-lipoxygenase by 5,6-methanoleukotriene A4, a stable analogue of leukotriene A4.  FEBS Lett. 1982;  143 13-6.
  • 193 Croft K D, Beilin L J, Ford G L. Differential inhibition of thromboxane B2 and leukotriene B4 biosynthesis by two naturally occurring acetylenic fatty acids.  Biochim Biophys Acta. 1987;  921 621-4.
  • 194 Redl K, Breu W, Davis B, Bauer R. Anti-inflammatory active polyacetylenes from Bidens campylotheca .  Planta Med. 1994;  60 58-62.
  • 195 Kraus C M, Neszmelyi A, Holly S, Wiedemann B, Nenninger A, Torssell K B. et al . New acetylenes isolated from the bark of Heisteria acuminata .  J Nat Prod. 1998;  61 422-7.
  • 196 Alanko J, Kurahashi Y, Yoshimoto , Yamamoto S, Baba K. Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases.  Biochem Pharmacol. 1994;  48 1979-81.
  • 197 Wagner H, Dorsch W, Bayer T, Breu W, Willer F. Antiasthmatic effects of onions: inhibition of 5-lipoxygenase and cyclooxygenase in vitro by thiosulfinates and ”Cepaenes”.  Prostaglandins Leukot Essent Fatty Acids. 1990;  39 59-62.
  • 198 Sendl A, Elbl G, Steinke B, Redl K, Breu W, Wagner H. Comparative pharmacological investigations of Allium ursinum and Allium sativum .  Planta Med. 1992;  58 1-7.
  • 199 Xiao H, Parkin K L. Antioxidant functions of selected allium thiosulfinates and S-alk(en)yl-L-cysteine sulfoxides.  J Agric Food Chem. 2002;  50 2488-93.
  • 200 Dorsch W, Wagner H, Bayer T, Fessler B, Hein G, Ring J. et al . Anti-asthmatic effects of onions. Alk(en)ylsulfinothioic acid alk(en)yl-esters inhibit histamine release, leukotriene and thromboxane biosynthesis in vitro and counteract PAF and allergen-induced bronchial obstruction in vivo .  Biochem Pharmacol. 1988;  37 4479-86.
  • 201 Schwaiger S, Adams M, Seger C, Ellmerer E P, Bauer R, Stuppner H. New constituents of Leontopodium alpinum and their in vitro leukotriene biosynthesis inhibitory activity.  Planta Med. 2004;  70 978-85.
  • 202 Rollinger J M, Langer T, Stuppner H. Strategies for efficient lead structure discovery from natural products.  Curr Med Chem. 2006;  13 1491-507.
  • 203 Franke L, Schwarz O, Muller-Kuhrt L, Hoernig C, Fischer L, George S. et al . Identification of natural-product-derived inhibitors of 5-lipoxygenase activity by ligand-based virtual screening.  J Med Chem. 2007;  50 2640-6.
  • 204 Chwalek M, Lalun N, Bobichon H, Ple K, Voutquenne-Nazabadioko L. Structure-activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction.  Biochim Biophys Acta. 2006;  1760 1418-27.
  • 205 Morris A J, Frohman M A, Engebrecht J. Measurement of phospholipase D activity.  Anal Biochem. 1997;  252 1-9.
  • 206 Kondo T, Beutler E. Depletion of red cell ATP by incubation with 2-deoxyglucose.  J Lab Clin Med. 1979;  94 617-23.
  • 207 Frankel E N. The antioxidant and nutritional effects of tocopherols, ascorbic acid and beta-carotene in relation to processing of edible oils. Bibl Nutr Dieta 1989: 297-312.
  • 208 Orning L, Krivi G, Fitzpatrick F A. Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes.  J Biol Chem. 1991;  266 1375-8.
  • 209 Chang J, Skowronek M D, Cherney M L, Lewis A J. Differential effects of putative lipoxygenase inhibitors on arachidonic acid metabolism in cell-free and intact cell preparations.  Inflammation. 1984;  8 143-55.
  • 210 Bucar F, Resch M, Bauer R, Burits M, Knauder E, Schubert-Zsilavecz M. 5-Methylflavasperone and rhamnetin from Guiera senegalensis and their antioxidative and 5-lipoxygenase inhibitory activity.  Pharmazie. 1998;  53 875-8.
  • 211 Skaltsa H, Bermejo P, Lazari D, Silvan A M, Skaltsounis A L, Sanz A. et al . Inhibition of prostaglandin E2 and leukotriene C4 in mouse peritoneal macrophages and thromboxane B2 production in human platelets by flavonoids from Stachys chrysantha and Stachys candida .  Biol Pharm Bull. 2000;  23 47-53.
  • 212 Kimura Y, Okuda H, Arichi S. Studies on Scutellariae Radix; XIII1. Effects of various flavonoids on arachidonate Metabolismmin leukocytes.  Planta Med. 1985;  51 132-6.
  • 213 Dehmlow C, Murawski N, de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells.  Life Sci. 1996;  58 1591-600.
  • 214 Son M J, Moon T C, Lee E K, Son K H, Kim H P, Kang S S. et al . Naturally occurring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.  Arch Pharm Res. 2006;  29 282-6.
  • 215 Hartisch C, Kolodziej H, von Bruchhausen F. Dual inhibitory activities of tannins from Hamamelis virginiana and related polyphenols on 5-lipoxygenase and lyso-PAF: acetyl-CoA acetyltransferase.  Planta Med. 1997;  63 106-10.
  • 216 Hong J, Smith T J, Ho C T, August D A, Yang C S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues.  Biochem Pharmacol. 2001;  62 1175-83.
  • 217 Petroni A, Blasevich M, Papini N, Salami M, Sala A, Galli C. Inhibition of leukocyte leukotriene B4 production by an olive oil-derived phenol identified by mass-spectrometry.  Thromb Res. 1997;  87 315-22.
  • 218 Dohi T, Anamura S, Shirakawa M, Okamoto H, Tsujimoto A. Inhibition of lipoxygenase by phenolic compounds.  Jpn J Pharmacol. 1991;  55 547-50.
  • 219 Zschocke S, Lehner M, Bauer R. 5-Lipoxygenase and cyclooxygenase inhibitory active constituents from Qianghuo (Notopterygium incisum).  Planta Med. 1997;  63 203-6.
  • 220 Kimura Y, Okuda H, Okuda T, Hatano T, Arichi S. Studies on the activities of tannins and related compounds, X. Effects of caffeetannins and related compounds on arachidonate metabolism in human polymorphonuclear leukocytes.  J Nat Prod. 1987;  50 392-9.
  • 221 Wang J P, Ho T F, Chang L C, Chen C C. Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187-induced pleurisy in mice.  J Pharm Pharmacol. 1995;  47 857-60.
  • 222 Wang J P, Hsu M F, Raung S L, Chen C C, Kuo J S, Teng C M. Anti-inflammatory and analgesic effects of magnolol.  Naunyn Schmiedebergs Arch Pharmacol. 1992;  346 707-12.
  • 223 Hsu M F, Lu M C, Tsao L T, Kuan Y H, Chen C C, Wang J P. Mechanisms of the influence of magnolol on eicosanoid metabolism in neutrophils.  Biochem Pharmacol. 2004;  67 831-40.
  • 224 Gissurarson S R, Sigurdsson S B, Wagner H, Ingolfsdottir K. Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of guinea pig taenia coli.  J Pharmacol Exp Ther. 1997;  280 770-3.
  • 225 Gongora L, Giner R M, Manez S, Recio Mdel C, Schinella G, Rios J L. Effects of caffeoyl conjugates of isoprenyl-hydroquinone glucoside and quinic acid on leukocyte function.  Life Sci. 2002;  71 2995-3004.
  • 226 Adams M, Pacher T, Greger H, Bauer R. Inhibition of leukotriene biosynthesis by stilbenoids from Stemona species .  J Nat Prod. 2005;  68 83-5.
  • 227 de las Heras B, Abad M J, Silvan A M, Pascual R, Bermejo P, Rodriguez B. et al . Effects of six diterpenes on macrophage eicosanoid biosynthesis.  Life Sci. 2001;  70 269-78.

Prof. Dr. Oliver Werz

Department of Pharmaceutical Analytics

Pharmaceutical Institute

Eberhard-Karls-University Tuebingen

Auf der Morgenstelle 8

72076 Tuebingen

Germany

Phone: +49-7071-297-8793

Fax: +49-7071-294-565

Email: oliver.werz@uni-tuebingen.de

    >