Skip to main content

Advertisement

Log in

Signaling in the Motility Responses of the Human Neutrophil

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The neutrophil has developed into one of the most efficient vertebrate motile cells. It migrates through tissues, where it encounters multiple chemoattractant signals with complex spatial and temporal characteristics. The directional movement of the neutrophil is signaled by the binding of chemoattractants and chemokines to G-protein-coupled receptors expressed on the plasma membrane. The signals from the ligand-bound receptors are transmitted along signaling pathways and initiate various cell responses, such as motility, superoxide production, and secretion. The signaling of the motility responses finds its climax in the polymerization of F-actin, which results in lamella formation and overall rearrangement of the cellular cytoskeleton and cell crawling. Also, during motility, adhesion receptors attach to and detach from their ligands and provide the necessary traction for crawling. These events are highly synchronized and allow the cell to orient in shallow chemoattractant gradients even when more than one chemoattractants are present. Due to the complexity of the motility responses, the signaling of their regulation is still not well understood. Recent advances in the understanding of the mechanism of F-actin polymerization have shown that the small GTPasess Cdc42, Rac2, and RhoA, play a critical role in motility. The bound integrin receptors may also contribute to the signaling of motility via tyrosine kinase phosphorylation of guanine nucleotide exchange factors and other regulatory proteins. In this review, we discuss the signaling of neutrophil motility in relation to the response of the cell to chemoattractant activation. © 2002 Biomedical Engineering Society.

PAC2002: 8717Jj, 0130Rr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Akasaki, T., H. Koga, and H. Sumimoto. Phosphoinositide 3–kinase–dependent and–independent activation of the small GTPase Rac2 in human neutrophils. J. Biol. Chem. 274:18055–18059, 1999.

    Google Scholar 

  2. Alblas, J., L. Ulfman, P. Hordijk, and L. Koenderman. Activation of Rho and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell. 12:2137–2145, 2001.

    Google Scholar 

  3. Ali, H., B. Haribabu, R. M. Richardson, and R. Snyderman. Mechanisms of inflammation and leukocyte activation. Med. Clin. North Am. 81:1–28, 1997.

    Google Scholar 

  4. Ali, H., R. M. Richardson, B. Haribabu, and R. Snyderman. Chemoattractant receptor cross desensitization. J. Biol. Chem. 274:6027–6030, 1999.

    Google Scholar 

  5. Allen, W. E., G. E. Jones, J. W. Pollard, and A. J. Ridley. Rho, Rac, and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell. Sci. 110:707–720, 1997.

    Google Scholar 

  6. Alteraifi, A. M., and D. V. Zhelev. Transient increase of free cytosolic calcium during neutrophil motility responses. J. Cell. Sci. 110:1967–1977, 1997.

    Google Scholar 

  7. Ambruso, D. R., C. Knall, A. N. Abell, J. Panepinto, A. Kurkchubasche, G. Thurman, C. Gonzalez–Aller, A. Hiester, M. deBoer, R. J. Harbeck, R. Oyer, G. L. Johnson, and D. Roos. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl. Acad. Sci. U.S.A. 97:4654–4659, 2000.

    Google Scholar 

  8. Arai, H., and I. F. Charo. Differential regulation of G–protein–mediated signaling by chemokine receptors. J. Biol. Chem. 271:21814–21819, 1996.

    Google Scholar 

  9. Arcaro, A. The small GTP–binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J. Biol. Chem. 273:805–813, 1998.

    Google Scholar 

  10. Bamburg, J. R., A. McGoughb, and S. Onoc. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol. 9:364–370, 1999.

    Google Scholar 

  11. Belisle, B., and A. Abo. N–formil peptide receptor ligation induces Rac–dependent actin reorganization through G βγ subunits and class Ia phosphoinositide 3–kinases. J. Biol. Chem. 275:26225–26232, 2000.

    Google Scholar 

  12. Ben–Baruch, A., D. F. Michiel, and J. J. Oppenheim. Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270:11703–11706, 1995.

    Google Scholar 

  13. Blanchoin, L., and T. D. Pollard. Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and pro–filin. J. Biol. Chem. 273:25106–25111, 1998.

    Google Scholar 

  14. Bruyninckx, W. J., K. M. Comerford, D. W. Lawrence, and S. P. Colgan.Phosphoinositide 3–kinase modulation of β3–integrin represents an endogenous “braking” mechanism during neutrophil transmatrix migration. Blood 97:3251–3258, 2001.

    Google Scholar 

  15. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20:1461–1477, 2000.

    Google Scholar 

  16. Campbell, J. J., E. F. Foxman, and E. C. Butcher. Chemoattractant receptor crosstalk as a regulatory mechanism in leukocyte adhesion and migration. Eur. J. Immunol. 27:2571–2578, 1997.

    Google Scholar 

  17. Campbell, J. J., J. Hedrick, A. Zlotnik, M. A. Siani, D. A. Thompson, and E. C. Butcher. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279:381–384, 1998.

    Google Scholar 

  18. Carlier, M.–F., C. Jean, K. J. Rieger, M. Lenfant, and D. Pantaloni. Modulation of the interaction between G–actin and thymosin β 4 by the ATP/ADP ratio: Possible implication in the regulation of actin dynamics. Proc. Natl. Acad. Sci. U.S.A. 90:5034–5038, 1993.

    Google Scholar 

  19. Carlier, M.–F., V. Laurent, J. Santolini, R. Melki, D. Didry, G.–X. Xia, Y. Hong, N.–H. Chua, and D. Pantaloni. Actin deploymerizing factor (ADF/Cofilin) enhances the rate of filament turnover: Implication in actin–based motility. J. Cell Biol. 136:1307–1322, 1997.

    Google Scholar 

  20. Carlos, T. M., and J. M. Harlan. Leukocyte–endothelial adhesion molecules. Blood 84:2068–2101, 1994.

    Google Scholar 

  21. Cassimeris, L., H. McNeill, and S. H. Zigmond. Chemoattractant–stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J. Cell Biol. 110:1067–1075, 1990.

    Google Scholar 

  22. Cassimeris, L., D. Safer, V. T. Nachmias, and S. H. Zigmond. Thymosin β 4 sequesters the majority of G–actin in resting human polymorphonuclear leukocytes. J. Cell Biol. 119:1261–1270, 1992.

    Google Scholar 

  23. Chatah, N.–E.–H., and C. S. Abrams. G–protein–coupled receptor activation induces the membrane translocation and activation of phosphatidylinositol–4–phosphate 5–kinase Iα by a Rac–and Rho–dependent pathway. J. Biol. Chem. 276:34059–34065, 2001.

    Google Scholar 

  24. Chen, H., B. W. Bernstein, and J. R. Bamburg. Regulating actin–filament dynamics in vivo. Trends Biochem. Sci. 25:19–23, 2000.

    Google Scholar 

  25. Chen, S., and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144:185–200, 1999.

    Google Scholar 

  26. Chong, L. D., A. Traynor–Kaplan, G. M. Bokoch, and M. A. Schwartz. The small GTP–binding protein Rho regulates a phosphatidylinositol 4–phosphate 5–kinase in mammalian cells. Cell 79:507–513, 1994.

    Google Scholar 

  27. Coates, T. D., R. G. Watts, R. Hartman, and T. H. Howard. Relationship of F–actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol. 117:765–774, 1992.

    Google Scholar 

  28. Coffer, P. J., N. Geijsen, L. M'Rabet, R. C. Schweizer, T. Maikoe, J. A. M. Raaijmekers, J.–W. J. Lammers, and L. Koenderman. Comparison of the roles of mitogen–activated protein kinase kinase and phosphatidylinositol 3–kinase signal transduction in neutrophil effector function. Biochem. J. 329:121–130, 1998.

    Google Scholar 

  29. Cox, E. A., and A. Huttenlocher. Regulation of integrinmediated adhesion during cell migration. Microsc. Res. Tech. 43:412–419, 1998.

    Google Scholar 

  30. Cunningham, C. C., R. Vegners, R. Bucki, M. Funaki, N. Korde, J. H. Hartwig, T. P. Stossel, and P. A. Janmey. Cell permeant polyphosphoinositide–binding peptides that block cell motility and actin assembly. J. Biol. Chem. 276:43390–43399, 2001.

    Google Scholar 

  31. Damaj, B. B., S. R. McColl, K. Neote, N. Songquing, K. T. Ogborn, C. A. Herbert, and P. H. Naccache. Identification of G–protein binding sites of the human interlaikin–8 receptors by functional mapping of the intracellular loops. FASEB J. 12:1426–1434, 1996.

    Google Scholar 

  32. Das, B., X. Shu, G.–J. Day, J. Han, U. M. Krishna, J. R. Falck, and D. Broek. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J. Biol. Chem. 275:15074–15081, 2000.

    Google Scholar 

  33. Derman, M. P., A. Toker, J. H. Hartwig, K. Spokes, J. R. Falck, C. S. Chen, L. C. Cantley, and L. G. Cantley. The lipid products of phosphoinositide 3–kinase increase cell motility through protein kinase C. J. Biol. Chem. 272:6465–6470, 1997.

    Google Scholar 

  34. Devalaraja, M. N., and A. Richmond. Multiple chemotactic factors: Fine control or redundancy? Trends Pharmacol. Sci. 20:151–156, 1999.

    Google Scholar 

  35. Didry, D., M.–F. Carlier, and D. Pantaloni. Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J. Biol. Chem. 273:25602–25611, 1998.

    Google Scholar 

  36. DiNubile, M. J., L. Cassimeris, M. Joyce, and S. H. Zigmond. Actin filament barbed–end capping activity in neutrophil lysates: The role of capping protein–beta 2. Mol. Biol. Cell. 6:1659–1671, 1995.

    Google Scholar 

  37. Dowler, S., R. A. Currie, D. G. Campbell, M. Deak, G. Kular, C. P. Downes, and D. R. Alessi. Identification of pleckstrin–homology–domain–containing proteins with novel phosphoinositide–binding specificities. Biochem. J. 351:19–31, 2000.

    Google Scholar 

  38. Edwards, D. C., L. C. Sanders, G. M. Bokoch, and G. N. Gill. Activation of LIM–kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nat. Cell Biol. 1:253–259, 1999.

    Google Scholar 

  39. Ehrengruber, M. U., D. A. Deranleau, and T. D. Coates. Shape oscillations of human neutrophil leukocytes: Characterization and relationship to cell motility. J. Exp. Biol. 199:741–747, 1996.

    Google Scholar 

  40. Evans, E. A., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160, 1989.

    Google Scholar 

  41. Fechheimer, M., and S. H. Zigmond. Focusing on unpolymerized actin. J. Cell Biol. 123:1–5, 1993.

    Google Scholar 

  42. Ferguson, S. S., L. S. Barak, J. Zhang, and M. G. Caron. G–protein–coupled receptor regulation: Role of G–proteincoupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74:1095–1110, 1996.

    Google Scholar 

  43. Fernandez, R., and S. J. Suchard. Syk activation is required for spreading and H2O2 release in adherent human neutrophils. J. Immunol. 160:5154–5162, 1998.

    Google Scholar 

  44. Fernandez–Segura, E., J. M. Garcia, J. L. Santos, and A. Campos. Shape, F–actin, and surface morphology changes during chemotactic peptide–induced polarity in human neutrophils. Anat. Rec. 241:519–528, 1995.

    Google Scholar 

  45. Fukami, K., N. Sawada, T. Endo, and T. Takenawa. Identification of a phosphatidylinositol 4,5–bisphosphate–binding site in chicken skeletal muscle alpha–actinin. J. Biol. Chem. 271:2646–2650, 1996.

    Google Scholar 

  46. Fukuoka, M., S. Suetsugu, H. Miki, K. Fukami, T. Endo, and T. Takenawa. A novel neural Wiskott–Aldrich Syndrome Protein (N–WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol. 152:471–482, 2001.

    Google Scholar 

  47. Glogauer, M., J. Hartwig, and T. Stossel. Two pathways through Cdc42 couple the N–formyl receptor to actin nucleation in permeabilized human neutrophils. J. Cell Biol. 150:785–796, 2000.

    Google Scholar 

  48. Gómez–Moutón, C., J. L. Abad, E. Mira, R. A. Lacalle, E. Gallardo, S. Jiménez–Baranda, I. Illa, A. Bernad, S. Mañes, and C. Martínez–A. Segregation of leading–edge and uropod components into specific lipid rafts during T–cell polarization. PNAS 98:9642–9647, 2001.

    Google Scholar 

  49. Grabovsky, V., S. Feigelson, C. Chen, D. A. Bleijs, A. Peled, G. Cinamon, F. Baleux, F. Arenzana–Seisdedos, T. Lapidot, Y. v. Kooyk, R. R. Lobb, and R. Alon. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192:495–506, 2000.

    Google Scholar 

  50. Gray, G. D., S. R. Hasslen, J. A. Ember, D. F. Carney, M. J. Herron, S. L. Erlandsen, and R. D. Nelson. Receptors for the chemoattractants C5a and IL–8 are clustered on the surface of human neutrophils. J. Histochem. Cytochem. 45s:1461–1467, 1997.

    Google Scholar 

  51. Haddad, E., J. L. Zugaza, F. Louache, N. Debili, C. Crouin, K. Schwarz, A. Fischer, W. Vainchenker, and J. Bertoglio. The interaction between Cdc42 and WASP is required for SDF–1–induced T–lymphocyte chemotaxis. Blood 97:33–38, 2001.

    Google Scholar 

  52. Hall, A. Rho GTPases and the actin cytoskelton. Science 279:509–514, 1998.

    Google Scholar 

  53. Han, J., K. Luby–Phelps, B. Das, X. Shu, Y. Xia, R. D. Mosteller, U. M. Krishna, J. R. Falck, M. A. White, and D. Broek. Role of substrates and products of PI 3–kinase in regulating activation of Rac–related guanosine triphosphatases by Vav. Science 279:558–560, 1998.

    Google Scholar 

  54. Harakawa, N., M. Sasada, A. Maeda, K. Asagoe, M. Nohgawa, K. Takano, Y. Matsuda, K. Yamamoto, and M. Okuma. Random migration of polymorphonuclear leukocytes induced by GM–CSF involving a signal transduction pathway different from that of fMLP. J. Leukoc. Biol. 61s:500–506, 1997.

    Google Scholar 

  55. Haribabu, B., R. M. Richardson, M. W. Verghese, A. J. Barr, D. V. Zhelev, and R. Snyderman. Function and regulation of chemoattractant receptors. Immunol. Res. 3:271–279, 2000.

    Google Scholar 

  56. Haribabu, B., and R. Snyderman. Identification of additional members of human G–protein–coupled receptor kinase multigene family. Proc. Natl. Acad. Sci. U.S.A. 90:9398–9402, 1993.

    Google Scholar 

  57. Haribabu, B., D. V. Zhelev, B. C. Pridgen, R. M. Richardson, H. Ali, and R. Snyderman. Chemoattractant receptors activate distinct pathways for chemotaxis and secretion. J. Biol. Chem. 274:37087–37092, 1999.

    Google Scholar 

  58. Harris, E. S., T. M. McIntyre, S. M. Prescott, and G. A. Zimmerman. The leukocyte integrins. J. Biol. Chem. 275:23409–23412, 2000.

    Google Scholar 

  59. Hartman, R. S., K. Lau, W. Chou, and T. D. Coats. The fundamental motor of the human neutrophil is not random evidence for local non–Markov movement in neutrophils. Biophys. J. 67:2535–2545, 1994.

    Google Scholar 

  60. Hartwig, J. H., G. M. Bokoch, C. L. Carpenter, P. A. Janmey, L. A. Taylor, A. Toker, and T. P. Stossel. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653, 1995.

    Google Scholar 

  61. Heidermann, S. R., and R. E. Buxbaum. Cell crawling: First the motor, now the transmission. J. Cell Biol. 141:1–4, 1998.

    Google Scholar 

  62. Hemler, M. E. Integrins. In: Guide Book to the Extracellular Matrix and Adhesion Proteins, edited by T. Kreis and R. Vale. New York: Oxford University Press, 1999.

    Google Scholar 

  63. Hemmings, L., D. J. Rees, V. Ohanian, S. J. Bolton, A. P. Gilmore, B. Patel, H. Priddle, J. E. Trevithick, R. O. Hynes, and D. R. Critchley. Talin contains three actin–binding sites each of which is adjacent to a vinculin–binding site. J. Cell. Sci. 109:2715–2726, 1996.

    Google Scholar 

  64. Higgs, H. N., and T. D. Pollard. Activation by Cdc42 and PIP2 of Wiscott/NAldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150:1311–1320, 2000.

    Google Scholar 

  65. Hirsch, E., V. L. Katanaev, C. Garlanda, O. Azzolino, L. Pirola, L. Silengo, S. Sozzani, and A. Mantova. Central role for G–protein–coupled phosphoinositide 3–kinase γ in inflammation. Science 287:1049–1053, 2000.

    Google Scholar 

  66. Huges, P. E., and M. Pfaff. Integrin affinity modulation. Trends Cell Biol. 8:359–364, 1998.

    Google Scholar 

  67. Huttelmaier, S., O. Mayboroda, B. Harbeck, T. Jarchau, B. M. Jockusch, and M. Rudiger. The interaction of the cellcontact proteins VASP and vinculin is regulated by phosphatidylinositol–4,5–bisphosphate. Curr. Biol. 8:479–488, 1998.

    Google Scholar 

  68. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    Google Scholar 

  69. Imai, K., S. Nonoyama, H. Miki, T. Morio, K. Fukami, Q. Zhu, A. Aruffo, H. D. Ochs, J. Yata, and T. Takenawa. The Pleckstrin homology domain of the Wiskott–Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin. Immunol. 92:128–137, 1999.

    Google Scholar 

  70. Jin, T., N. Zhang, Y. Long, C. A. Parent, and P. N. Devreotes. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287:1034–1036, 1999.

    Google Scholar 

  71. Johansson, B., M. P. Wymann, K. Holmgren–Peterson, and K. E. Magnusson. N–formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist. J. Cell Biol. 121:1281–1289, 1993.

    Google Scholar 

  72. Jones, S. L., U. G. Knaus, G. M. Bokoch, and E. J. Brown. Two signaling mechanisms for activation of αM β 2 avidity in polymorphonuclear neutrophils. J. Biol. Chem. 273:10556–10566, 1998.

    Google Scholar 

  73. Jones, S. L., J. Wang, C. W. Turck, and E. J. Brown. A role for the actin–bundling protein L–plastin in the regulation of leukocyte integrin function. Proc. Natl. Acad. Sci. U.S.A. 95s:9331–9336, 1998.

    Google Scholar 

  74. Juang, H., Y. Kuang, Y. Wu, A. Surcka, M. I. Simon, and D. Wu. Pertussis toxin–sensitive activation of phospholipase C by the C5a and fMet–Leu–Phe receptors. J. Biol. Chem. 27:13430–13434, 1996.

    Google Scholar 

  75. Kasper, B., N. Tidow, D. Grothues, and K. Welte. Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia. Blood 95:2947–2953, 2000.

    Google Scholar 

  76. Katanaev, V. L. Signal transduction in neutrophil chemotaxis. Biochemistry 66:351–368, 2001.

    Google Scholar 

  77. Keller, H., and H. Cottier. Morphological and biochemical responses of leukocytes in chemokinesis and chemotaxis. Path. Res. Pract. 180:125–129, 1985.

    Google Scholar 

  78. Kim, J.–Y., R. D. M. Soedes, P. Schaap, R. Valkeman, J. A. Borleis, P. J. M. V. Haastert, P. N. Devreotes, and D. Hereld. Phorphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G–protein–mediated responses. J. Biol. Chem. 272:27313–27318, 1997.

    Google Scholar 

  79. Kindzelskii, A. L., and H. R. Petty. Extremely lowfrequency pulsed–dc electric fields promote neutrophil extension, metabolic resonance, and DNA damage when phase matched with metabolic oscillators. Biochim. Biophys. Acta 1495:90–111, 2000.

    Google Scholar 

  80. Kindzelskii, A. L., M.–J. Zhou, R. P. Haugland, L. A. Boxer, and H. R. Petty. Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. Biophys. J. 74:90–97, 1998.

    Google Scholar 

  81. Kunkel, E. J., J. L. Dunne, and K. Ley. Leukocyte arrest during cytokine–dependent inflammation in vivo. J. Immunol. 164:3301–3308, 2000.

    Google Scholar 

  82. Kusano, K., H. Abe, and T. Obinata. Detection of a sequence involved in actin and phosphoinositide binding in the N–terminal side of cofilin. Mol. Cell. Biochem. 190:133–141, 1999.

    Google Scholar 

  83. Laudanna, C., J. J. Campbell, and E. C. Butcher. Elevation of intracellular cAMP inhibits RhoA activation and integrindependent leukocyte adhesion induced by chemoattractants. J. Biol. Chem. 272s:24141–24144, 1997.

    Google Scholar 

  84. Laudanna, C., D. Mochly–Rosen, T. Liron, G. Constantin, and E. C. Butcher. Evidence of ζ protein kinase C involvement in polymorphonuclear neutrophil integrin–dependent adhesion and chemotaxis. J. Biol. Chem. 273:30306–30315, 1998.

    Google Scholar 

  85. Lauffenburger, D., B. Farrel, R. Tranquillo, A. Kistler, and S. Zigmond. Gradient perception by leucocytes. J. Cell. Sci. 88:415–416, 1987.

    Google Scholar 

  86. Li, Z., H. Jiang, W. Xie, Z. Zhang, A. V. Smrcka, and D. Wu. Roles of PLC–β2 and –β3 and PI3K γ in chemoattractant–mediated signal transduction. Science 287:1046–1049, 2000.

    Google Scholar 

  87. Liu, S., D. A. Calderwood, and M. H. Ginsberg. Integrin cytoplasmic domain–binding proteins. J. Cell. Sci. 113:3563–3571, 2000.

    Google Scholar 

  88. Loike, J. D., L. Cao, S. Budhu, E. E. Marcantonio, J. E. Khoury, S. Hoffman, T. A. Yednock, and S. C. Silverstein. Differential regulation of 1 integrins by chemoattractants regulates neutrophil migration through fibrin. J. Biol. Chem. 144:1047–1056, 1999.

    Google Scholar 

  89. Loitto, V.–M., B. Rasmusson, and K.–E. Magnusson. Assessment of neutrophil N–formyl peptide receptors by using antibodies and fluorescent peptides. J. Leukocyte Biol. 69:762–771, 2001.

    Google Scholar 

  90. Lollo, B. A., K. W. Chan, E. M. Hanson, V. T. Moy, and A. A. Brian. Direct evidence for two affinity states for lymphocyte function–associated antigen 1 on activated T cells. J. Biol. Chem. 268:21693–21700, 1993.

    Google Scholar 

  91. Ma, A. D., A. Metjian, A. Bagrodia, S. Taylor, and C. S. Abrams. Cytoskeletal reorganization by G–protein–coupled receptors is dependent on phosphoinositide 3–kinase γ, a Rac guanosine exchange factor, and Rac. Mol. Cell. Biol. 18s:4744–4751, 1998.

    Google Scholar 

  92. Maciver, S. K., B. J. Pope, S. Whytock, and A. G. Weeds. The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F–actin binding by human ADF, but not of Acanthamoeba actophorin. Eur. J. Biochem. 256:388–397, 1998.

    Google Scholar 

  93. Mackay, C. R., and B. A. Imhof. Cell adhesion in the immune system. Immunol. Today 14:99–103, 1993.

    Google Scholar 

  94. Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno, and S. Narumiya. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM kinase. Science 285:895–898, 1999.

    Google Scholar 

  95. McDowall, A., B. Leitinger, P. Stanley, P. A. Bates, A. M. Randi, and N. Hogg. The I domain of integrin leukocyte function–associated Antigen–1 is involved in a conformational change leading to high affinity binding to ligand intercellular adhesion molecule 1 (ICAM–1). J. Biol. Chem. 273:27396–27403, 1998.

    Google Scholar 

  96. McKay, D. A., J. R. Kusel, and P. C. Wilkinson. Studies of chemotactic factor–induced polarity in human neutrophils. J. Cell. Sci. 100:473–479, 1991.

    Google Scholar 

  97. Mellado, M., J. M. Rodríguez–Frade, S. Mañes, and C. Martínez–A. Chemokine signaling and functional responses: The role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19:397–421, 2001.

    Google Scholar 

  98. Miki, H., T. Sasaki, Y. Takai, and T. Takenawa. Induction of filopodium formation by WASP–related actin–polymerizing protein N–WASP. Nature (London) 391:93–96, 1998.

    Google Scholar 

  99. Miki, H., S. Suetsugu, and T. Takenawa. WAVE, a novel WASP–family protein involved in actin reorganization induced by Rac. EMBO J. 17:6932–6941, 1998.

    Google Scholar 

  100. Missy, K., V. v. Poucke, P. Raynal, C. Viala, G. Mauco, M. Plantavid, H. Charp, and B. Payrastre. Lipid products of phosphoinositide 3–kinase interact with Rac1 GTPase and stimulate GDP dissociation. J. Biol. Chem. 273:30279–30286, 1998.

    Google Scholar 

  101. Mitchison, T. J., and L. P. Cramer. Actin–based cell motility and cell locomotion. Cell 84:371–379, 1996.

    Google Scholar 

  102. Moores, S. L., L. M. Selfors, J. Fredericks, T. Breit, K. Fujikawa, F. W. Alt, J. S. Brugge, and W. Swat. Vav family proteins couple to diverse cell surface receptors. Mol. Cell. Biol. 20:6364–6373, 2000.

    Google Scholar 

  103. Moreau, V., and M. Way. Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Lett. 427:353–356, 1998.

    Google Scholar 

  104. Mullins, R. D., J. A. Heuser, and T. D. Pollard. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. U.S.A. 95:6181–6186, 1998.

    Google Scholar 

  105. Murdoch, C., and A. Finn. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043, 2000.

    Google Scholar 

  106. Murphy, P. M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12:593–633, 1994.

    Google Scholar 

  107. Nieto, M., J. M. R. Frade, D. Sancho, M. Mellado, C. Martinez–A, and F. Sanchez–Madrid. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186:153–158, 1997.

    Google Scholar 

  108. Niggli, V. A membrane–permeant ester of phosphatidylinositol 3,4,5–triphosphate (PIP3) is an activator of human neutrophil migration. FEBS Lett. 473:217–221, 2000.

    Google Scholar 

  109. Nishita, M., H. Aizawa, and K. Mizuno. Stroma cell–derived factor 1 α activates LIM kinase 1 and induces cofilin phosphorylation for T–cell chemotaxis. Mol. Cell. Biol. 22:774–783, 2002.

    Google Scholar 

  110. Nobes, C. D., and A. Hall. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144s:1235–1244, 1999.

    Google Scholar 

  111. Obergfell, A., B. A. Judd, M. A. d. Pozo, M. A. Schwartz, G. A. Koretzky, and S. J. Shattil. The molecular adapter SPL–76 relays signals from platelet integrin αIIb β 3 to the actin cytoskeleton. J. Biol. Chem. 276:5916–5923, 2001.

    Google Scholar 

  112. Ohashi, K., K. Nagata, M. Maekawa, T. Ishizaki, S. Narumiya, and K. Mizuno. Rho–associated kinase ROCK activates LIM–kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275:3577–3582, 2000.

    Google Scholar 

  113. Okada, K., H. Takano–Ohmuro, T. Obinata, and H. Abe. Dephosphorylation of cofilin in polymorphonuclear leukocytes derived from peripheral blood. Exp. Cell Res. 227:116–122, 1996.

    Google Scholar 

  114. Peterson, J. R., R. S. Lokey, T. J. Mitchison, and M. W. Kirschner. A chemical inhibitor of N–WASP reveals a new mechanism for targeting protein interactions. Proc. Natl. Acad. Sci. U.S.A. 98:10624–10629, 2001.

    Google Scholar 

  115. Pfaff, M., S. Liu, D. J. Erle, and M. H. Ginsberg. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273:6104–6109, 1998.

    Google Scholar 

  116. Pollard, T. D., L. Blanchoin, and R. D. Mullins. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545–576, 2000.

    Google Scholar 

  117. Prehoda, K. E., J. A. Scott, R. D. Mullins, and W. A. Lim. Integration of multiple signals through cooperative regulation of the N–WASP–Arp2/3 complex. Science 290:801–806, 2000.

    Google Scholar 

  118. Rainger, G. E., C. D. Buckley, D. L. Simmons, and G. B. Nash. Neutrophils sence flow–generated stress and direct their migration through αv β 3 integrin. Am. J. Physiol. 276:H858–H864, 1999.

    Google Scholar 

  119. Redmont, T., and S. H. Zigmond. Distribution of F–actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F actin. Cell Motil. Cytoskeleton 26:7–18, 1993.

    Google Scholar 

  120. Roberts, A. W., C. Kim, L. Zhen, J. B. Lowe, R. Kapur, B. Petryniak, A. Spaetti, J. D. Pollock, J. B. Borneo, G. B. Bradford, S. J. Atkinson, M. C. Dinauer, and D. A. Williams. Deficiency of the hematopoietic cell–specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196, 1999.

    Google Scholar 

  121. Rohatgi, R., H. H. Ho, and M. W. Kirschner. Mechanism of N–WASP activation by CDC42 and phosphatidylinositol 4,5–bisphosphate. J. Cell Biol. 150s:1299–1310, 2000.

    Google Scholar 

  122. Rosales, C., S. L. Jones, D. McCourt, and E. J. Brown. Bromophenacyl bromide binding to the actin–bundling protein L–plastin inhibits inositol trisphosphate–independent increase in Ca2+ in human neutrophils. Proc. Natl. Acad. Sci. U.S.A. 91:3534–3538, 1994.

    Google Scholar 

  123. Ruoslahti, E. Integrins. J. Clin. Invest. 87:1–5, 1991.

    Google Scholar 

  124. Sampath, R., P. J. Gallagner, and F. M. Pavalko. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. J. Biol. Chem. 273:33588–33594, 1998.

    Google Scholar 

  125. Sasaki, T., J. Irie–Sasaki, R. G. Jones, A. J. Oliveira–dos–Santos, W. L. Stanford, B. Bolon, A. Wakeham, A. Itie, D. Bouchard, I. Kozieradzki, N. Joza, T. W. Mak, P. S. Ohashi, A. Suzuki, and J. M. Penninger. Function of PI3K in thymocyte development, T–cell activation, and neutrophil migration. Science 287:1040–1046, 2000.

    Google Scholar 

  126. Schafer, D. A., P. B. Jennings, and J. A. Cooper. Dynamics of capping protein and actin assembly in vitro: Uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135:169–179, 1996.

    Google Scholar 

  127. Schmitt, M., and B. Bultmann. Fluorescent chemotactic peptide as tools to identify the f–Met–Leu–Phe receptor on human granulocytes. Biochem. Soc. Trans. 18:219–222, 1990.

    Google Scholar 

  128. Schroder, J.–M. Chemoattractants as mediators of neutrophilic tissue recruitment. Clin. Dermatol. 18:245–263, 2000.

    Google Scholar 

  129. Scita, G., P. Tenca, E. Frittoli, A. Tocchetti, M. Innocenti, G. Giardina, and P. P. d. Fiore. Signaling from Ras to Rac and beyond: Not just a matter of GEFs. EMBO J. 19:2393–2398, 2000.

    Google Scholar 

  130. Servant, G., O. D. Weiner, P. Herzmark, T. Balla, J. W. Sedat, and H. R. Bourne. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040, 2000.

    Google Scholar 

  131. Servant, G., O. D. Weiner, E. R. Neptune, J. W. Sedat, and H. R. Bourne. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell. 10:1163–1178, 1999.

    Google Scholar 

  132. Seveau, S., R. J. Eddy, F. R. Maxfield, and L. M. Pierini. Cytoskeleton–dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell 12:3550–3562, 2001.

    Google Scholar 

  133. Shao, J.–Y., and R. M. Hochmuth. Mechanical anchoring strength of L–selectin, β 2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys. J. 77:587–596, 1999.

    Google Scholar 

  134. Snyderman, R., and R. J. Uhing. Chemoattractant stimulus–response coupling. In: Inflammation: Basic Principles and Clinical Correlates, edited by J. I. Gallin, I. M. Goldstein, and R. Snyderman. New York: Raven, 1992, pp. 412–439.

    Google Scholar 

  135. Sohn, R. H., J. Chen, K. S. Koblan, P. F. Bray, and P. J. Goldschmidt–Clermont. Localization of a binding site for phosphatidylinositol 4,5–biphosphate on human profilin. J. Biol. Chem. 270:21114–21120, 1995.

    Google Scholar 

  136. Southwick, F., and C. Young. The actin released from profilin–actin complexes is insufficient to account for the increase in F–actin in chemoattractant–stimulated polymorphonuclear leukocytes. J. Cell Biol. 110:1965–1973, 1990.

    Google Scholar 

  137. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872, 1995.

    Google Scholar 

  138. Steimle, P. A., J. D. Hoffert, N. B. Adey, and S. W. Craig. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem. 274:18414–18420, 1999.

    Google Scholar 

  139. Stossel, T. P. The structure of cortical cytoplasm. Philos. Trans. R. Soc. London, Ser. B 299:275–289, 1982.

    Google Scholar 

  140. Stossel, T. P. The mechanical responses of white blood cells. In: Inflammation: Basic Principles and Clinical Correlates, edited by J. I. Gallin, I. M. Goldstein, and R. Snyderman. New York: Raven, 1992, pp. 459–475.

    Google Scholar 

  141. Stossel, T. P. On the crawling of animal cells. Science 260:1086–1094, 1993.

    Google Scholar 

  142. Suetsudu, S., H. Miki, H. Yamaguchi, T. Obinata, and T. Takenawa. Enhancement of branching efficiency by the actin filament–binding activity of N–WASP/WAVE2. J. Cell. Sci. 114:4533–4542, 2001.

    Google Scholar 

  143. Suetsugu, S., H. Miki, and T. Takenawa. The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17:6516–6526, 1998.

    Google Scholar 

  144. Sullivan, S. J., G. Dukas, and S. H. Zigmond. Asymmetric distribution of the chemotactic peptide receptor on polymorphonuclear leucocytes. J. Cell Biol. 99:1461–1467, 1984.

    Google Scholar 

  145. Sumi, T., K. Matsumoto, and T. Nakamura. Specific activation if LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho–dependent protein kinase. J. Biol. Chem. 276:670–676, 2001.

    Google Scholar 

  146. Sumi, T., K. Matsumoto, Y. Takai, and T. Nakamura. Cofilin phosphorylation and actin cytoskeleton dynamics regulated by Rho–and Cdc42–activated LIM–kinase 2. J. Cell Biol. 147:1519–1532, 1999.

    Google Scholar 

  147. Sun, H. Q., M. Yamamoto, M. Mejillano, and H. L. Yin. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274:33179–33182, 1999.

    Google Scholar 

  148. Svitkina, T. M., and G. G. Borisy. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145:1009–1026, 1999.

    Google Scholar 

  149. Takenawa, T., and T. Itoh. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochem. Biophys. Res. Commun. 1533:190–206, 2001.

    Google Scholar 

  150. Takenawa, T., and H. Miki. WASP and WAVE family proteins: Key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell. Sci. 114:1801–1809, 2001.

    Google Scholar 

  151. Tall, E. G., I. Spector, S. N. Pentyala, I. Bitter, and M. J. Rebecchi. Dynamics of phosphoinositol 4,5–biphosphate in actin–rich structures. Curr. Biol. 10:743–746, 2000.

    Google Scholar 

  152. Thrasher, A. J., and S. Burns. Wiskott–Aldrich syndrome: A disorder of haematopoetic cytoskeletal regulation. Microsc. Res. Tech. 47:107–113, 1999.

    Google Scholar 

  153. Tolias, K. F., J. H. Hartwig, H. Ishihara, Y. Shibasaki, L. C. Cantley, and C. L. Carpenter. Type I a phosphatidylinositol–4–phosphate 5–kinase mediates Rac–dependent actin assembly. Curr. Biol. 10:153–156, 2000.

    Google Scholar 

  154. Tomhave, E. D., R. M. Richardson, J. R. Didsbury, L. Menard, R. Snyderman, and H. Ali. Cross desensitization of receptors for peptide chemoattractants. J. Immunol. 153:3267–3275, 1994.

    Google Scholar 

  155. Troys, M. v., D. Dewitte, J. L. Verschelde, M. Goethals, J. Vandekerckhove, and C. Ampe. The competitive interaction of actin and PIP2 with actophorin is based on overlapping target sites: design of a gain–of–function mutant. Biochemistry 39:12181–12189, 2000.

    Google Scholar 

  156. Tsukita, S., and S. Yonemura. Cortical actin organization: Lessons from ezrin/radixin/moesin (ERM) proteins. J. Biol. Chem. 274:34507–34510, 1999.

    Google Scholar 

  157. Tyagi, S. R., L. B. Klickstein, and A. Nicholson–Weller. C5a–stimulated human neutrophils use a subset of β2 integrins to support the adhesion–dependent phase of superoxide production. J. Leukocyte Biol. 68:679–686, 2000.

    Google Scholar 

  158. Ueda, H., R. Morishita, J. Yamauchi, H. Itoh, K. Kato, and T. Asano. Regulation of Rac and Cdc42 pathways by Gi during lysophosphatidic acid–induced cell spreading. J. Biol. Chem. 276:6846–6852, 2001.

    Google Scholar 

  159. Vanhaesebroeck, B., S. J. Leevers, K. Ahmadi, J. Timms, R. Kasto, P. C. Driscoll, R. Woscholski, P. J. Parker, and M. D. Waterfield. Synthesis and function of 3–phosphorylated inositol lipids. Annu. Rev. Biochem. 70s:535–602, 2001.

    Google Scholar 

  160. Villalba, M., K. Bi, F. Rodriguez, Y. Tanaka, S. Schoenberger, and A. Altman. Vav 1/Rac–dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J. Cell Biol. 155:331–338, 2001.

    Google Scholar 

  161. Wagner, M., and A. Wegner. Similar affinities ADP and ATP for G actin at physiological salt concentrations. FEBS Lett. 162:112–116, 1983.

    Google Scholar 

  162. Walter, R. J., and W. A. Marasco. Direct visualization of formylpeptide receptor binding on rounded and polarized human neutrophils: Cellular and receptor heterogeneity. J. Leukocyte Biol. 41:377–391, 1987.

    Google Scholar 

  163. Wang, J., and E. J. Brown. Immune complex–induced integrin activation and L–plastin phosphorylation require protein kinase A. J. Biol. Chem. 274:24349–24356, 1999.

    Google Scholar 

  164. Watts, R. G., and T. H. Howard. Role of tropomyosin, alpha–actinin, and actin binding protein 280 in stabilizing Triton insoluble F–actin in basal and chemotactic factor activated neutrophils. Cell Motil. Cytoskeleton 28:155–164, 1994.

    Google Scholar 

  165. Weber, K. S. C., L. B. Klickstein, and C. Weber. Specific activation of leukocyte 2 integrins lymphocyte functionassociated antigen–1 and Mac–1 by chemokines mediated by distinct pathways via the subunit cytoplasmic domains. Mol. Biol. Cell. 10:861–873, 1999.

    Google Scholar 

  166. Weber, K. S. C., L. B. Klickstein, P. C. Weber, and C. Weber. Chemokine–induced monocyte transmigration requires cdc42–mediated cytoskeletal changes. Eur. J. Immunol. 28:2245–2251, 1998.

    Google Scholar 

  167. Weinand, R. G., A. J. Rosenspire, and H. R. Petty. Modeling the influence of ectodomain affinities on the spatial distribution of membrane receptors. J. Theor. Biol. 197s:217–225, 1999.

    Google Scholar 

  168. Wells, T. N. C., A. E. I. Proudfoot, and C. A. Power. Chemokine receptors and their role in leukocyte activation. Immunol. Lett. 65s:35–40, 1999.

    Google Scholar 

  169. Werr, J., X. Xie, P. Hedqvist, E. Ruoslahti, and L. Lindbom. b1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J. Exp. Med. 187:2091–2096, 1998.

    Google Scholar 

  170. Willeke, T., S. Behrens, K. Scharffetter–Kochanek, P. Gaehtgens, and B. Walzog. β2 integrin (CD11/CD18)–mediated signaling involves tyrosine phosphorylation of c–Cb1 in human neutrophils. J. Leukocyte Biol. 68:284–292, 2000.

    Google Scholar 

  171. Williams, D. A., W. Tao, F. Yang, C. Kim, Y. Gu, P. Mans–field, J. E. Levine, B. Petryniak, C. W. Derrow, C. Harris, B. Jia, Y. Zheng, D. R. Ambruso, J. B. Lowe, S. J. Atkinson, M. C. Dinauer, and L. Boxer. Dominant negative mutation of the hematopoietic–specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654, 2000.

    Google Scholar 

  172. Williams, M. A., and J. S. Solomkin. Integrin–mediated signaling in human neutrophil functioning. J. Leukocyte Biol. 65:725–736, 1999.

    Google Scholar 

  173. Wolven, A. K., L. D. Belmont, N. M. Mahoney, S. C. Almo, and D. G. Drubin. In vivo importance of actin nucleotide exchange catalyzed by profilin. J. Cell Biol. 150:895–903, 2000.

    Google Scholar 

  174. Woodside, D. G., A. Obergfell, L. Leng, J. L. Wilsbacher, C. K. Miranti, J. S. Brugge, S. J. Shattil, and M. H. Ginsberg. Activation of Syk protein tyrosine kinase through interaction with integrin β cytoplasmic domains. Curr. Biol. 11s:1799–1804, 2001.

    Google Scholar 

  175. Worthylake, R. A., S. Lemoine, J. M. Watson, and K. Burridge. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154:147–160, 2001.

    Google Scholar 

  176. Wynmann, M. P., P. Kernen, D. A. Deranleau, and M. Baggiolini. Respiratory bust oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. J. Biol. Chem. 264:15829–15834, 1989.

    Google Scholar 

  177. Yang, C., M. Huang, J. DeBiasio, M. Pring, M. Joyce, H. Miki, T. Takenawa, and S. H. Zigmond. Profilin enhances Cdc42–induced nucleation of actin polymerization. J. Cell Biol. 150:1001–1012, 2000.

    Google Scholar 

  178. Yuli, I., and R. Snyderman. Rapid changes in light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions. J. Clin. Invest. 73:1408–1417, 1984.

    Google Scholar 

  179. Zhelev, D. V., A. M. Alteraifi, and R. M. Hochmuth. F–actin network formation in tethers and in pseudopods stimulated by chemoattractant. Cell Motil. Cytoskeleton 35:331–344, 1996.

    Google Scholar 

  180. Zhelev, D. V., D. Needham, and R. M. Hochmuth. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys. J. 67s:696–705, 1994.

    Google Scholar 

  181. Zicha, D., W. E. Allen, P. M. Brickell, C. Kinnon, G. A. Dunn, and G. E. Jones. Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br. J. Haematol. 101:659–665, 1998.

    Google Scholar 

  182. Zigmond, S. H. Mechanism of sensing chemical gradients by polymorphonuclear leucocytes. Nature (London) 249:450–452, 1974.

    Google Scholar 

  183. Zigmond, S. H. Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil. Cytoskeleton 25:309–316, 1993.

    Google Scholar 

  184. Zigmond, S. H., M. Joyce, C. Yang, K. Brown, M. Huang, and M. Pring. Mechanism of Cdc42–induced actin polymerization in neutrophil extracts. J. Cell Biol. 142:1001–1012, 1998.

    Google Scholar 

  185. Zigmond, S. H., H. I. Levitsky, and B. J. Kreel. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leucocyte chemotaxis. J. Cell Biol. 89:585–592, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhelev, D.V., Alteraifi, A. Signaling in the Motility Responses of the Human Neutrophil. Annals of Biomedical Engineering 30, 356–370 (2002). https://doi.org/10.1114/1.1477446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1477446

Navigation