Skip to main content

Advertisement

Log in

Identification of Two Novel, Potent, Low-Liability Antinociceptive Compounds from the Direct In Vivo Screening of a Large Mixture-Based Combinatorial Library

  • Research Article
  • Theme: Fishing for the Hidden Proteome in Health and Disease: Focus on Drug Abuse
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Synthetic combinatorial methods now make it practical to readily produce hundreds of thousands of individual compounds, but it is clearly impractical to screen each separately in vivo. We theorized that the direct in vivo testing of mixture-based combinatorial libraries during the discovery phase would enable the identification of novel individual compounds with desirable antinociceptive profiles while simultaneously eliminating many compounds with poor absorption, distribution, metabolism, or pharmacokinetic properties. The TPI 1346 small-molecule combinatorial library is grouped in 120 mixtures derived from 26 functionalities at the first three positions and 42 functionalities at the fourth position of a pyrrolidine bis-cyclic guanidine core scaffold, totaling 738,192 compounds. These 120 mixtures were screened in vivo using the mouse 55°C warm water tail-withdrawal assay to identify mixtures producing antinociception. From these data, two fully defined individual compounds (TPI 1818-101 and TPI 1818-109) were synthesized. These were examined for antinociceptive, respiratory, locomotor, and conditioned place preference effects. The tail-withdrawal assay consistently demonstrated distinctly active mixtures with analgesic activity that was blocked by pretreatment with the non-selective opioid antagonist, naloxone. Based on these results, synthesis and testing of TPI 1818-101 and 1818-109 demonstrated a dose-dependent antinociceptive effect three to five times greater than morphine that was antagonized by mu- or mu- and kappa-opioid receptor selective antagonists, respectively. Neither 1818-101 nor 1818-109 produced significant respiratory depression, hyperlocomotion, or conditioned place preference. Large, highly diverse mixture-based libraries can be screened directly in vivo to identify individual compounds, potentially accelerating the development of promising therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CNS:

Central nervous system

CPP:

Conditioned place preference

DAMGO:

[d-Ala2,(Me)Phe4,Gly(ol)5]enkephalin

DOR:

Delta-opioid receptor

DPDPE:

[d-Pen2,Phe4,d-Pen5]enkephalin

i.c.v.:

Intracerebroventricular

i.p.:

Intraperitoneal

KOR:

Kappa-opioid receptor

MOR:

Mu-opioid receptor

nor-BNI:

Norbinaltorphimine

s.c.:

Subcutaneous

U50,488:

(±)-trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide

U69,593:

(+)-(5α,7α,8β)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide

References

  1. Gutstein HB, Akil H. Opioid analgesics. In: Hardman JG, Limbird LE, editors. Goodman and Gilman's the Pharmacological Basis of Therapeutics, 10th ed. New York: McGraw-Hill; 2001. p. 569–619.

    Google Scholar 

  2. Houghten RA, Pinilla C, Appel JR, Blondelle SE, Dooley CT, Eichler J, Nefzi A, Ostresh JM. Mixture-based synthetic combinatorial libraries. J Med Chem. 1999;42:3743–78.

    Article  PubMed  CAS  Google Scholar 

  3. Houghten RA, Pinilla C, Giulianotti MA, Appel JR, Dooley CT, Nefzi A, Ostresh JM, Yu Y, Maggiora GM, Medina-Franco JL, Brunner D, Schneider J. Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. J Comb Chem. 2008;10:3–19. doi: 10.1021/cc7001205.

    Article  PubMed  CAS  Google Scholar 

  4. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 1991;354:84–6.

    Article  PubMed  CAS  Google Scholar 

  5. Houghten RA. Soluble combinatorial libraries: extending the range and repertoire of chemical diversity. Methods: A companion to methods in enzymology. 1994;6:354–60.

    Article  CAS  Google Scholar 

  6. Thompson LA, Ellman JA. Synthesis and applications of small molecular libraries. Chem Rev. 1996;96:555–600.

    Article  PubMed  CAS  Google Scholar 

  7. Nefzi A, Ostresh JM, Houghten RA. The current status of heterocyclic combinatorial libraries. Chem Rev. 1997;97:440–72.

    Article  Google Scholar 

  8. Nefzi A, Ostresh JM, Yu Y, Houghten RA. Combinatorial chemistry: libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds. J Org Chem. 2004;69:3603–9.

    Article  PubMed  CAS  Google Scholar 

  9. Dolle RE. Comprehensive survey of combinatorial library synthesis: 2004. J Comb Chem. 2005;7:739–98.

    Article  PubMed  CAS  Google Scholar 

  10. Carroll FI, Houghten RA. From rapid in vitro screening to rapid in vivo screening in the drug discovery process. Neuropsychopharmacology 2009;34:251–2.

    Article  PubMed  CAS  Google Scholar 

  11. Dooley CT, Chung NN, Schiller PW, Houghten RA. Acetalins: opioid receptor antagonists determined through the use of synthetic peptides combinatorial libraries. Proc Natl Acad Sci USA. 1993;90:10811–5.

    Article  PubMed  CAS  Google Scholar 

  12. Pinilla C, Appel JR, Blondelle SE, Dooley CT, Eichler J, Ostresh JM, Houghten RA. Versatility of positional scanning synthetic combinatorial libraries for the identification of individual compounds. Drug Dev Res. 1994;33:133–45.

    Article  CAS  Google Scholar 

  13. Hensler ME, Bernstein G, Nizet V, Nefzi A. Pyrrolidine bis-cyclic guanidines with antimicrobial activity against drug-resistant Gram-positive pathogens identified from a mixture-based combinatorial library. Bioorganic Medicinal Chem Lett. 2006;16:5073–9.

    Article  CAS  Google Scholar 

  14. Ostresh JM, Husar GM, Blondelle SE, Dörner B, Weber PA, Houghten RA. “Libraries from libraries”: chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity. Proc Natl Acad Sci USA. 1994;91:11138–42.

    Article  PubMed  Google Scholar 

  15. McLaughlin JP, Marton-Popovici M, Chavkin C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci. 2003;23:5674–83.

    PubMed  CAS  Google Scholar 

  16. Szumlinski KK, Price KL, Frys KA, Middaugh LD. Unconditioned and conditioned factors contribute to the ‘reinstatement’ of cocaine place conditioning following extinction in C57BL/6 mice. Behav Brain Res. 2002;136:151–60.

    Article  PubMed  CAS  Google Scholar 

  17. McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C. Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 2006;31:787–94.

    Article  PubMed  CAS  Google Scholar 

  18. Carey AN, Borozny K, Aldrich JV, McLaughlin JP. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid antagonist arodyn. Eur J Pharmacol. 2007;569:84–9.

    Article  PubMed  CAS  Google Scholar 

  19. Bardo MT, Rowlett JK, Harris MJ. Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehavioral Rev. 1995;19:39–51.

    Article  CAS  Google Scholar 

  20. Orsini C, Bonito-Oliva A, Conversi D, Cabib S. Susceptibility to conditioned place preference induced by addictive drugs in mice of the C57Bl/6 and DBA/2 inbred strains. Psychopharmacology (Berl). 2005;181:327–36.

    Article  CAS  Google Scholar 

  21. Shook JE, Watkins WD, Camporesi EM. Differential roles of opioid receptors in respiration, respiratory disease, and opiate-induced respiratory depression. Am Rev Repir Dis. 1990;142:895–909.

    CAS  Google Scholar 

  22. Burks TF, Fox DA, Hirning LD, Shook JE, Porreca F. Regulation of gastrointestinal function by multiple opioid receptors. Life Sci. 1988;43:2177–81

    Article  PubMed  CAS  Google Scholar 

  23. Yahya MD, Watson RR. Immunomodulation by morphine and marijuana. Life Sci. 1987;41:2503–10.

    Article  PubMed  CAS  Google Scholar 

  24. Way EL, Loh HH, Shen FH. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther. 1969;167:1–8.

    PubMed  CAS  Google Scholar 

  25. DeLander GE, Portoghese PS, Takemori AE. Role of spinal mu opioid receptors in the development of morphine tolerance and dependence. J Pharmacol Exp Ther. 1984;231:91–6.

    PubMed  CAS  Google Scholar 

  26. Cowan A, Zhu XZ, Mosberg HI, Omnaas JR, Porreca F. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther. 1988;246:950–5.

    PubMed  CAS  Google Scholar 

  27. May CN, Dashwood MR, Whitehead CJ, Mathias CJ. Differential cardiovascular and respiratory responses to central administration of selective opioid agonists in conscious rabbits: correlation with receptor distribution. Br J Pharmacol. 1989;98:903–13.

    PubMed  CAS  Google Scholar 

  28. Negus SS, Butelman ER, Chang K-J, DeCosta B, Winger G, Woods JH. Behavioral effects of the systemically active delta opioid agonist BW373U86 in rhesus monkeys. J Pharmacol Exp Ther. 1994;270:1025–34.

    PubMed  CAS  Google Scholar 

  29. Leander JD. A kappa opioid effect: increased urination in the rat. J Pharmacol Exp Ther. 1983;224:89–94.

    PubMed  CAS  Google Scholar 

  30. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate receptors. Science 1986;233:774–6.

    Article  PubMed  CAS  Google Scholar 

  31. Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA. 1985;82:5131–5.

    Article  PubMed  CAS  Google Scholar 

  32. Dooley CT, Houghten RA. The use of positional scanning synthetic peptide combinatorial libraries for the rapid determination of opioid receptor ligands. Life Sci. 1993;52:1509–17.

    Article  PubMed  CAS  Google Scholar 

  33. Dooley CT, Ny P, Bidlack JM, Houghten RA. Selective ligands for the mu, delta, and kappa opioid receptors identified from a single tetrapeptide positional scanning combinatorial library. J Biol Chem. 1998;273:18848–56.

    Article  PubMed  CAS  Google Scholar 

  34. Dooley CT, Chung NN, Wilkes BC, Schiller PW, Bidlack JM, Pasternak GW, Houghten RA. An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library. Science 1994;266:2019–22.

    Article  PubMed  CAS  Google Scholar 

  35. Carlezon WA Jr, Béguin C, Knoll AT, Cohen BM. Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol Ther. 2009;123:334–43.

    Article  PubMed  CAS  Google Scholar 

  36. Paul D, Standifer KM, Inturrisi CE, Pasternak GW. Pharmacological characterization of morphine-6β-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther. 1989;251:477–83.

    PubMed  CAS  Google Scholar 

  37. Maldonado R, Valverde O. Participation of the opioid system in cannabinoid-induced antinociception and emotional-like responses. Eur Neuropsychopharmacol. 2003;13:401–10.

    Article  PubMed  CAS  Google Scholar 

  38. Quang PN, Schmidt BL. Endothelin-A receptor antagonism attenuates carcinoma-induced pain through opioids in mice. J Pain. 2010; PMID 20071245 (in press).

  39. Unal CB, Owen MD, Millington WR. Beta-endorphin-induced cardiorespiratory depression is inhibited by glycyl-L-glutamine, a dipeptide derived from beta-endorphin processing. J Pharmacol Exp Ther. 1994;271:952–8.

    PubMed  CAS  Google Scholar 

  40. Smith TW, Buchan P, Parsons DN, Wilkinson S. Peripheral antinociceptive effects of N-methyl morphine. Life Sci. 1982;31:1205–8.

    Article  PubMed  CAS  Google Scholar 

  41. Oluyomi AO, Hart SL, Smith TW. Differential antinociceptive effects of morphine and methylmorphine in the formalin test. Pain 1992;49:415–8.

    Article  PubMed  CAS  Google Scholar 

  42. DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Des. 2004;10:743–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIDA grant R21 DA019620 (to RAH) and by the State of Florida, Executive Office of the Governor’s Office of Tourism, Trade, and Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Houghten.

Additional information

Guest Editors: Rao S. Rapaka, Lloyd D. Fricker, and Jonathan V. Sweedler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilley, K.J., Giulianotti, M., Dooley, C.T. et al. Identification of Two Novel, Potent, Low-Liability Antinociceptive Compounds from the Direct In Vivo Screening of a Large Mixture-Based Combinatorial Library. AAPS J 12, 318–329 (2010). https://doi.org/10.1208/s12248-010-9191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9191-3

Key words

Navigation