Skip to main content
Log in

Determinants of G protein inhibition of presynaptic calcium channels

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The modulation of presynaptic calcium (Ca) channels by heterotrimeric G proteins is a key factor for the regulation of neurotransmission. Over the past 20 yr, a significant understanding of the molecular events underlying this regulation has been acquired. It is now widely accepted that binding of G protein βγ dimers directly to the cytoplasmic region linking domains I and II of the Ca channel α1 subunit results in a stabilization of the closed conformation of the channel, thereby inhibiting current activity. The extent of the inhibition is dependent on the Gβ subunit isoform, and is antagonized by both strong membrane depolarizations and protein kinase C-dependent phosphorylation of the channel. Finally, the inhibition is critically modulated by regulator of G protein signaling proteins, and by proteins forming the presynaptic vesicle release complex. Thus, the regulation of the activities of presynaptic Ca channels is becoming increasingly complex, a feature that may contribute to the overall fine-tuning of Ca entry into presynaptic nerve termini, and thus, neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., and Fox, A. P. (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438.

    Article  PubMed  CAS  Google Scholar 

  2. Bean, B. P. (1989) Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367–384.

    Article  PubMed  CAS  Google Scholar 

  3. Wheeler, D. B., Randall, A., and Tsien, R. W. (1994) Roles of N-type and Q-type channels in supporting hippocampal synaptic transmission. Science 264, 107–111.

    Article  PubMed  CAS  Google Scholar 

  4. Dunlap, K., Luebke, J. L., and Turner, T. J. (1995) Exocytotic Ca++ channels in the mammalian central nervous system. Trends Neurosci. 18, 89–98.

    Article  PubMed  CAS  Google Scholar 

  5. Nowicky, M. C., Fox, A. P., and Tsien, R. W. (1985) Three types of neuronal calcium channel agonist sensitivity. Nature 316, 440–443.

    Article  Google Scholar 

  6. Bean, B. P. (1989) Neurotransmitter inhibition of neuronal calcium channels by changes in channel voltage dependence. Nature 340, 153–156.

    Article  PubMed  CAS  Google Scholar 

  7. Tsien, R. W., Ellinor, P. T., and Horne, W. A. (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. 12, 349–354.

    Article  CAS  Google Scholar 

  8. McCleskey, E. W. (1994) Calcium channels: cellular roles and molecular mechanisms. Curr. Opin. Neurobiol. 4, 304–312.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi, K., Ueno, S., and Akaike, N. (1991) Kinetic properties of T-type Ca2+ currents in isolated rat hippocampal CA1 pyramidal neurons. J. Neurophysiol. 65, 148–155.

    PubMed  CAS  Google Scholar 

  10. Stea, A., Soong, T. W., and Snutch, T. P. (1995) Voltage-gated calcium channels, in Handbook of Receptors and Channels; Ligand- and Voltage-gated Ion Channels (North, R. R., ed.), CRC, Boca Raton, FL, pp. 113–152.

    Google Scholar 

  11. Zamponi, G. W. (1997) Antagonist sites of voltage-dependent calcium channels. Drug Dev. Res. 42, 131–143.

    Article  CAS  Google Scholar 

  12. Catterall, W. A. (1991) Structure and function of voltage-gated sodium and calcium channels. Curr. Opin. Neurobiol. 1, 5–13.

    Article  PubMed  CAS  Google Scholar 

  13. Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofman, F., Birnbaumer, L., and Brown, A. M. (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352, 527–530.

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Reyes, E., Cribbs, L. L., Daud, A., Lacerda, A. E., Barclay, J., Williamson, M. P., et al. (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896–900.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, J. F., Randall, A. D., Ellinor, P. T., Horne, W. A., Sather, W. A., Tanaba, T., Swartz, T. L., and Tsien, R. W. (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  16. Pragnell, M., DeWaard, M., Mori, Y., Tanabe, T., Snutch, T. P., and Campbell, K. P. (1994) Calcium channel β subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1 subunit. Nature 368, 67–70.

    Article  PubMed  CAS  Google Scholar 

  17. Sheng, Z., Rettig, T., Takahashi, M., and Catterall, W. A. (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  18. Sheng, Z.-H., Rettig, J., Cook, T., and Catterall, W. A. (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454.

    Article  PubMed  CAS  Google Scholar 

  19. Peterson, B. Z., DeMaria, C. D., Adelman, J. P., and Yue, D. T. (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558.

    Article  PubMed  CAS  Google Scholar 

  20. Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J. F., and Tsien, R. W. (1995) Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 15, 1121–1132.

    Article  PubMed  CAS  Google Scholar 

  21. Stotz, S. C., Hamid, J., Spaetgens, R. L., Jarvis, S. E., and Zamponi, G. W. (2000) Fast inactivation of voltage-dependent calcium channels: a hinged lid mechanism? J. Biol. Chem. 275, 24,575–24,582.

    Article  CAS  Google Scholar 

  22. Stea, A., Tomlinson, W. J., Soong, T. W., Bourinet, E., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1994) Localization and functional properties of a rat brain α1A calcium channel reflects similarities to neuronal Q- and P-type channels. Proc. Natl. Acad. Sci. USA 91, 10,576–10,580.

    Article  CAS  Google Scholar 

  23. Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., et al. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402.

    Article  PubMed  CAS  Google Scholar 

  24. Sather, W. A., Tanabe, T., Zhang, J. F., Mori, Y., Adams, M. E., and Tsien, R. W. (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α1 subunits. Neuron 11, 291–303.

    Article  PubMed  CAS  Google Scholar 

  25. Bourinet, E., Soong, T. W., Sutton, K., Slaymaker, S., Mathews, E., Monteil, A., et al. (1999) P- and Q-type calcium channel phenotypes generated by alternative splicing of the α1A gene. Nature Neuroscience 2, 407–415.

    Article  PubMed  CAS  Google Scholar 

  26. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233.

    Article  PubMed  CAS  Google Scholar 

  27. Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A., et al. (1992) Structure and functional expression of an θ-conotoxin-sensitive human N-type calcium channel. Science 257, 389–395.

    Article  PubMed  CAS  Google Scholar 

  28. Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. (1992) Molecular cloning of the α1 subunit of an θ-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sci. USA 89, 5058–5062.

    Article  PubMed  CAS  Google Scholar 

  29. Fujita, Y., Mynlieff, M., Dirksen, R. T., Kim, M., Niidome, T., Nakai, J., et al. (1993) Primary structure and functional expression of the θ-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 10, 585–598.

    Article  PubMed  CAS  Google Scholar 

  30. Tomlinson, W. J., Stea, A., Bourinet, E., Charnet, P., Nargeot, J., and Snutch, T. P. (1993) Functional properties of a neuronal class C L-type channel. Neuropharmacology 32, 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  31. Williams, M. E., Feldman, D. H., McCue, A. F., Brenner, R., Velicelebi, G., Ellis, S. B., and Harpold, M. M. (1992) Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron 8, 71–84.

    Article  PubMed  CAS  Google Scholar 

  32. Bech-Hansen, N. T., Naylor, M. J., Maybaum, T. A., Pearce, W. G., Koop, B., Fishman, G. A., et al. (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet. 19, 264–267.

    Article  PubMed  CAS  Google Scholar 

  33. Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  34. Williams, M. E., Marubio, L. M., Deal, C. R., Hans, M., Brust, P. F., Philipson, L. H., (1994) Structure and functional characterization of neuronal α1E calcium channel subtypes. J. Biol. Chem. 269, 22,347–22,357.

    CAS  Google Scholar 

  35. Cribbs, L. L., Lee, J.-H., Yang, J., Satin, J., Zhang, Y., Daud, A., et al. (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ. Res. 83, 103–109.

    PubMed  CAS  Google Scholar 

  36. Lee, J.-H., Daud, A. N., Cribbs, L. L., Lacerdo, A. E., Pereverzev, A., Kl:ockner, U., Schneider, T., and Perez-Reyes, E. (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19, 1912–1921.

    PubMed  CAS  Google Scholar 

  37. Monteil, A., Chemin, J., Bourinet E., Mennessier, G., Lory, P., and Nargeot, J. (2000) Molecular and functional properties of the human alpha (1G) subunit that forms T-type calcium channels. J. Biol. Chem. 275, 6090–6100.

    Article  PubMed  CAS  Google Scholar 

  38. Monteil, A., Chemin, J., Leuranguer, V., Altier, C., Mennessier, G., Bourinet, E., Lory, P., and Nargeot, J. (2000) Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J. Biol. Chem. 275, 16,530–16,535.

    CAS  Google Scholar 

  39. Castellano, A., Wei, X., Birnbaumer, L., and Perez-Reyes, E. (1993) Cloning and expression of a third calcium channel β subunit. J. Biol. Chem. 268, 3450–3455.

    PubMed  CAS  Google Scholar 

  40. Castellano, A., Wei, X., Birnbaumer, L., and Perez-Reyes, E. (1993). Cloning and expression of a neuronal calcium channel β subunit. J. Biol. Chem. 268, 12,359–12,366.

    CAS  Google Scholar 

  41. Westenbroek, R. E., Sakurai, T., Elliott, E. M., Hell, J. W., Starr, T. V., Snutch, T. P., and Catterall, W. A. (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418.

    PubMed  CAS  Google Scholar 

  42. Westenbroek, R. E., Hell, J. W., Warberm C., Dubel, S. J., Snutch, T. P., and Catterall, W. A. (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9, 1099–1115.

    Article  PubMed  CAS  Google Scholar 

  43. Hell, J. W., Westenbroek, R. E., Warner, C., Ahlijanian, M. K., Prystay, W., Gilbert, M. M., Snutch, T. P., and Catterall, W. A. (1993) Identification and subcellular localization of the neuronal class C and D L-type calcium channel alpha 1 subunits. J. Cell. Biol. 123, 949–962.

    Article  PubMed  CAS  Google Scholar 

  44. Hille, B. (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 17, 531–536.

    Article  PubMed  CAS  Google Scholar 

  45. Dunlap, K. and Fischbach, G. D. (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol. 317, 519–535.

    PubMed  CAS  Google Scholar 

  46. Forscher, P., Oxford, G., and Schulz, D. (1986) Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J. Physiol. 379, 131–144.

    PubMed  CAS  Google Scholar 

  47. Holz, G. G., Rane, S. G., and Dunlap, K. (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672.

    Article  PubMed  CAS  Google Scholar 

  48. Ikeda, S. R. and Schofield, G. (1989) Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J. Physiol. 409, 221–240.

    PubMed  CAS  Google Scholar 

  49. Kasai, H. and Aosaki, T. (1989) Modulation of Ca-channel current by an adenosine analog mediated by a GTP-binding protein in chick sensory neurons. Pfluegers Arch. 414, 145–149.

    Article  CAS  Google Scholar 

  50. Lipscombe, D., Kongsamut, S., and Tsien, R. W. (1989) α-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340, 639–642.

    Article  PubMed  CAS  Google Scholar 

  51. Ikeda, S. R. (1992) Prostaglandin modulation of Ca2+ channels in rat sympathetic neurones is mediated by guanine nucleotide binding proteins. J. Physiol. 459, 339–359.

    Google Scholar 

  52. Beech, D. J., Bernheim, L., and Hille, B. (1992) Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 8, 97–106.

    Article  PubMed  CAS  Google Scholar 

  53. Bernheim, L., Mathie, A., and Hille, B. (1992) Characterization of muscarinic receptor subtype inhibiting Ca2+ current and M current in rat sympathetic neurons. Proc. Natl. Acad. Sci. USA 89, 9544–9548.

    Article  PubMed  CAS  Google Scholar 

  54. Zhu, Y., and Ikeda, S. R. (1993) Adenosine modulates voltage-gated Ca2+ channels in adult rat sympathetic neurons. J. Neurophysiol. 70, 610–620.

    PubMed  CAS  Google Scholar 

  55. Mintz, I. M. and Bean, B. P. (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10, 889–898.

    Article  PubMed  CAS  Google Scholar 

  56. Shapiro, M. S. and Hille, B. (1993) Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. Neuron 10, 11–20.

    Article  PubMed  CAS  Google Scholar 

  57. Golard, A. and Siegelbaum, S. A. (1993) Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons. J. Neurosci. 13, 3884–3894.

    PubMed  CAS  Google Scholar 

  58. Caulfield, M. P., Jones, S., Vallis, Y, Buckley, N. J., Kim, G.-D., Milligan, G., and Brown, D. A. (1994) Muscarinic M-current inhibition via Gαq/11 and α-adrenoreceptor inhibition of Ca2+ current via Gαo in rat sympathetic neurons. J. Physiol. 477, 415–422.

    PubMed  CAS  Google Scholar 

  59. Zamponi, G. W. and Snutch, T. P. (1998) Decay of prepulse facilitation of N-type calcium channels during G protein inhibition is consistent with binding of a single Gβγ subunit. Proc. Natl. Acad. Sci. USA 95, 4035–4039.

    Article  PubMed  CAS  Google Scholar 

  60. Zamponi, G. W. and Snutch, T. P. (1998) Modulation of presynaptic calcium channels by G proteins. Curr. Opin. Neurobiol. 13, 1–12.

    Google Scholar 

  61. Arnot, M. I., Stotz, S. C., Jarvis, S. E., and Zamponi, G. W. (2000) Differential modulation of N-type (α1B) and P/Q-type (α1A) by different G protein β subunit isoforms. J. Physiol. 527, 203–212.

    Article  PubMed  CAS  Google Scholar 

  62. Brody, D. L., Patil, P. G., Mulle, J. G., Snutch, T. P., and Yue, D. T. (1997) Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca2+ channels in HEK 293 cells. J. Physiol. 499, 637–644.

    PubMed  CAS  Google Scholar 

  63. Williams, S., Serafin, M., Mühlethaler, M., and Bernheim, L. (1997) Facilitation of N-type calcium current is dependent on the frequency of action potential-like depolarizations in dissociated cholinergic basal forebrain neurons of the guinea pig. J. Neurosci. 17, 1625–1632.

    PubMed  CAS  Google Scholar 

  64. Brody, D. L. and Yue, D. T. (2000) Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci. 20, 2480–2494.

    PubMed  CAS  Google Scholar 

  65. Bertram, R. and Behan, M. (1999) Implications of G-protein-mediated Ca2+ channel inhibition for neurotransmitter release and facilitation. J. Computational Neurosci. 7, 197–211.

    Article  CAS  Google Scholar 

  66. Patil, P. G., deLeon, M., Reed, R. R., Dubel, S., Snutch, T. P., and Yue, D. T. (1996) Elementary events underlying voltage-dependent G protein inhibition of N-type calcium channels. Biophys. J. 71, 2509–2521.

    Article  PubMed  CAS  Google Scholar 

  67. Carabelli, V., Lovallo, M., Magnelli, V., Zucker, H., and Carbone, E. (1996) Voltage-dependent modulation of single N-type CA2+ channel kinetics by receptor agonists in IMR32 cells. Biophys. J. 70, 2144–2154.

    PubMed  CAS  Google Scholar 

  68. Boland, L. M. and Bean, B. P. (1993) Inhibition of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: kinetics and voltage dependence. J. Neurosci. 13, 515–533.

    Google Scholar 

  69. Elmslie, K. S., Kammermeir, P. J., and Jones, S. W. (1992) Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. J. Physiol. 456, 107–123.

    PubMed  CAS  Google Scholar 

  70. Colecraft, H. M., Patil, P. G., and Yue, D. T. (2000) Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels. J. Gen. Physiol. 115, 175–192.

    Article  PubMed  CAS  Google Scholar 

  71. Lee, H. K. and Elmslie, K. S. (2000) Reluctant gating of single N-type calcium channels during transmitter-induced inhibition in bullfrog sympathetic neurons. J. Neurosci. 20, 3115–3128.

    PubMed  CAS  Google Scholar 

  72. Currie, K. P. and Fox, A. P. (1997) Comparison of N- and P/Q-type voltage-gated calcium channel current inhibition. J. Neurosci. 17, 4570–4579.

    PubMed  CAS  Google Scholar 

  73. Bourinet, E., Soong, T. W., Stea, A., and Snutch, T. P. (1996) Determinants of the G-protein dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA 93, 1486–1491.

    Article  PubMed  CAS  Google Scholar 

  74. Campbell, V., Berrow, N. S., Fitzgerald, E. M., Brickley, K., and Dolphin, A. C. (1995) Inhibition of the interaction of G protein G0 with calcium channels by the calcium channel β-subunit in rat neurones. J. Physiol. 485, 365–372.

    PubMed  CAS  Google Scholar 

  75. Toth, P. T., Shekter, L. R., Ma, G. H., Phillipson, L. H., and Miller, R. J. (1996) Selective G-protein regulation of neuronal calcium channels. J. Neurosci. 16, 4617–4624.

    PubMed  CAS  Google Scholar 

  76. Page, K. M., Stephens, G. J., Berrow, N. S., and Dolphin, A. C. (1997) The intracellular loop between domains I and II of the B-type calcium channel confers aspects of G protein sensitivity to the E-type calcium channel. J. Neurosci. 17, 1330–1338.

    PubMed  CAS  Google Scholar 

  77. Stephens, G. J., Canti, C., Page, K. M., and Dolphin, A. C. (1998) Role of domain I in neuronal Ca2+ channel alpha 1 subunits in G protein modulation. J. Physiol. 509, 163–169.

    Article  PubMed  CAS  Google Scholar 

  78. Mehrke, G., Pereverzev, A., Grabsch, H., Hescheler, J., and Schneider, T. (1997) Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett. 408, 261–270.

    Article  PubMed  CAS  Google Scholar 

  79. Qin, N., Platano, D., Olcese, R., Stefani, E., and Birnbaumer, L. (1997) Direct interaction of gbetagamma with a C-terminal gbetagamma-binding domain of Ca2+ channel alpha1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 94, 8866–8871.

    Article  PubMed  CAS  Google Scholar 

  80. Canti, C., Bodnanov, Y., and Dolphin, A. C. (2000) Calcium channel β subunits bind reversibly to α1B calcium channels: concentration-dependent effect on activation and G protein modulation. Biophys. J. 78, 200A.

    Google Scholar 

  81. Ikeda, S. R. (1996) Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380, 255–258.

    Article  PubMed  CAS  Google Scholar 

  82. Herlitze, S., Garcia, D. E., Mackie, K., Hille, B., Scheuer, T., and Catterall, W. A. (1996) Modulation of Ca2+ channels by G-protein βγ subunits. Nature 280, 258–262.

    Article  Google Scholar 

  83. Garcia, D. E., Li, B., Garcia-Ferreiro, R. E., Hernandez-Ochoa, E. O., Yan, K., Gautam, N., (1998) G-protein β-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J. Neurosci. 18, 9163–9170.

    PubMed  CAS  Google Scholar 

  84. Ruiz-Velasco, V. and Ikeda, S. R. (2000) Multiple G-protein βγ combinations produce voltage-dependent inhibition of N-type calcium channel in rat superior cervical ganglion neurons. J. Neurosci. 20, 2183–2191.

    PubMed  CAS  Google Scholar 

  85. Lu, Q. and Dunlap, K. (1999) Cloning and functional expression of novel N-type Ca(2+) channel variants. J. Biol. Chem. 274, 34,566–34,575.

    CAS  Google Scholar 

  86. Jeong, S. W. and Ikeda, S. R. (1999) Sequestration of G-protein beta gamma subunits by different G-protein alpha subunits blocks voltage-dependent modulation of Ca2+ channels in rat sympathetic neurons. J. Neurosci. 19, 4755–4761.

    PubMed  CAS  Google Scholar 

  87. Jeong, S. W. and Ikeda, S. R. (2000) Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc. Natl. Acad. Sci. USA 97, 907–912.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang, J. F., Ellinor, P. T., Aldrich, R. W., and Tsien, R. W. (1996) Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron 17, 991–1003.

    Article  PubMed  CAS  Google Scholar 

  89. Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T. P. (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 385, 242–246.

    Article  Google Scholar 

  90. DeWaard, M., Liu, H., Walker, D., Scott, V. E. S., Gurnett, C. A., and Campbell, K. P. (1997) Direct binding of G protein βγ complex to voltage-dependent calcium channels. Nature 385, 446–450.

    Article  CAS  Google Scholar 

  91. Herlitze, S., Hockermann, G. H., Scheuer, T., and Catterall, W. A. (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit. Proc. Natl. Acad. Sci. USA 94, 1512–1516.

    Article  PubMed  CAS  Google Scholar 

  92. Hamid, J., Nelson, D., Spaetgens, R., Dubel, S. J., Snutch, T. P., and Zamponi, G. W. (1999) Identification of an integration center for crosstalk between PKC and G protein modulation of N-type calcium channels. J. Biol. Chem. 278, 6195–6202.

    Article  Google Scholar 

  93. Page, K. M., Canti, C., Stephens, G. J., Berrow, N. S., and Dolphin, A. C. (1998) Identification of the amino terminus of neuronal Ca2+ channel alpha 1 subunits alpha 1B and alpha 1E as an essential determinant of G-protein modulation. J. Neurosci. 18, 4815–4824.

    PubMed  CAS  Google Scholar 

  94. Canti, C., Page, K. M., Stephens, G. J., and Dolphin, A. C. (1999) Identification of residues in the N terminus of alpha 1B critical for inhibition of the voltage-dependent calcium channel by G beta gamma. J. Neurosci. 19, 6855–6864.

    PubMed  CAS  Google Scholar 

  95. Siemen, A. A. and Miller, R. J. (1998) Structural features determining receptor regulation of neuronal Ca channels. J. Neurosci. 18, 3689–3698.

    Google Scholar 

  96. Siemen, A. A. and Miller, R. J. (2000) Involvement of regions in domain I in the opioid receptor sensitivity of alpha 1B (Ca2+) channels. Mol. Pharmacol. 57, 1064–1074.

    Google Scholar 

  97. Ford, C. E., Skiba, N. P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L. R., et al. (1998) Molecular basis for interactions of G protein betagamma subunits with effectors. Science 280, 1271–1274.

    Article  PubMed  CAS  Google Scholar 

  98. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature 379, 369–374.

    Article  PubMed  CAS  Google Scholar 

  99. Swartz, K. J., Merrit, A., Bean, B. P., and Lovinger, D. M. (1993) Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 361, 165–168.

    Article  PubMed  CAS  Google Scholar 

  100. Swartz, K. J. (1993) Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons: disruption of G protein-mediated inhibition. Neuron 11, 305–320.

    Article  PubMed  CAS  Google Scholar 

  101. Barrett, C. F. and Rittenhouse, A. R. (2000) Modulation of N-type calcium channel activity by G-proteins and protein kinase C. J. Gen. Physiol. 115, 277–286.

    Article  PubMed  CAS  Google Scholar 

  102. Berman, D. M., Wilkie, T. M., and Gilman, A. G. (1996) GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452.

    Article  PubMed  CAS  Google Scholar 

  103. Doupnik, C. A., Davidson, N., Lester, H. A., and Kofuji, P. (1997) RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. USA 94, 10,461–10,466.

    Article  CAS  Google Scholar 

  104. Berman, D. M. and Gilman, A. G. (1998) Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  105. Jeong, S. W. and Ikeda, S. R. (1998) G protein α subunit Gαz couples to couples neurotransmitter receptors to ion channels in sympathetic neurons. Neuron 21, 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  106. Mellitti, K., Meza, U., Fisher, R., and Adams, B. (1999) Regulators of G protein signaling attenuate the G protein-mediated inhibition of N-type calcium channels. J. Gen. Physiol. 113, 97–109.

    Article  Google Scholar 

  107. Diverse-Pierreluissi, M. A., Fischer, T., Jordan, J. D., Schiff, M., Ortitz, D. F., Farquhar, M. G., and DeVries, L. (1999) Regulators of G protein signaling proteins as determinants of the rate of desensitization of presynaptic calcium channels. J. Biol. Chem. 274, 14,490–14,494.

    Article  Google Scholar 

  108. Jeong, S. W. and Ikeda, S. R. (2000) Endogenous regulator of G-protein signaling proteins modify N-type calcium channel modulation in rat sympathetic neurons. J. Neurosci. 20, 4489–4496.

    PubMed  CAS  Google Scholar 

  109. Mark, M. D., Witteman, S., and Herlitze, S. (2000) G protein modulation of recombinate P/Q type calcium channels by regulators of G protein signaling proteins. J. Physiol. 528, 65–77.

    Article  PubMed  CAS  Google Scholar 

  110. Kammermeier, P. J. and Ikeda, S. R. (1999) Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22, 819–829.

    Article  PubMed  CAS  Google Scholar 

  111. Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S. F., Wall, M. A., Chung, S. (1998) G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proc. Natl. Acad. Sci. USA 95, 13,307–13,312.

    Article  CAS  Google Scholar 

  112. Snow, B. E., Betts, L., Mangion, J., Sondek, J., and Siderovski, D. P. (1999) Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proc. Natl. Acad. Sci. USA 96, 6489–6494.

    Article  PubMed  CAS  Google Scholar 

  113. Mochida, S., Sheng, Z.-H., Baker, C., Kobayashi, H., and Catterall, W. A. (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17, 781–788.

    Article  PubMed  CAS  Google Scholar 

  114. Yokoyama, C. T., Sheng, Z., and Catterall, W. A. (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17, 6929–6938.

    PubMed  CAS  Google Scholar 

  115. Stanley, E. F. and Mirotznik, R. R. (1997) Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385, 340–343.

    Article  PubMed  CAS  Google Scholar 

  116. Sutton, K. G., McRory, J. E., Guthrie, H., Murphy, T. H., and Snutch, T. P. (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401, 800–804.

    Article  PubMed  CAS  Google Scholar 

  117. Jarvis, S. E., Magga, J., Beedle, A. M., Braun, J., and Zamponi, G. W. (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gβγ. J. Biol. Chem. 275, 6388–6394.

    Article  PubMed  CAS  Google Scholar 

  118. Magga, J., Jarvis, S. E., Arnot, M. I., Zamponi, G. W., and Braun, J. E. A. (2000) Cysteine string protein promotes G protein modulation of N-type calcium channels. Neuron. 28, 195–204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamponi, G.W. Determinants of G protein inhibition of presynaptic calcium channels. Cell Biochem Biophys 34, 79–94 (2001). https://doi.org/10.1385/CBB:34:1:79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:34:1:79

Index Entries

Navigation