Skip to main content
Log in

Signal integration and the specificity of insulin action

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Insulin is a potent metabolic hormone essential for the maintenance of normal circulating blood glucose level in mammals. The physiologic control of glucose homeostasis results from a balance between hepatic glucose release (glycogenolysis and gluconeogenesis) and dietary glucose absorption versus skeletal muscle and adipose tissue glucose uptake and disposal. Disruption of this delicate balance either through defects in insulin secretion, liver glucose output, or peripheral tissue glucose uptake results in pathophysiological states of insulin resistance and diabetes. In particular, glucose transport into skeletal muscle and adipose tissue is the rate-limiting step in glucose metabolism and reduction in the efficiency of this process (insulin resistance) is one of the earliest predictors for the development of Type II diabetes. Importantly, recent studies have directly implicated an impairment in insulin receptor signal transduction as the prime mechanism for peripheral tissue insulin resistance. In this review, we have focused on recent developments in our understanding of the molecular mechanisms and signal transduction pathways that insulin utilizes to specifically regulate glucose uptake. The detailed understanding of these events will provide a conceptual framework for the development of new therapeutic targets to treat this chronic and debilitating disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olson, A. L., and Pessin, J. E. (1996) Structure, function and regulation of the mammalian facilitative glucose transporter gene family. Ann. Rev. Nutr. 16, 235–256.

    CAS  Google Scholar 

  2. Kahn, B. B., and Flier, J. S. (1990) Regulation of glucose-transporter gene expression in vitro and in vivo. Diabetes Care 13, 548–564.

    PubMed  CAS  Google Scholar 

  3. Bell, G. I., Fukumoto, H., Burant, C. F., Seino, S., Sivitz, W. L., and Pessin, J. E. (1991) Facilitative glucose transport proteins: structure and regulation of expression in adipose tissue. Int. J. Obesity 15, 127–132.

    CAS  Google Scholar 

  4. Klip, A., Tsakiridis, T., Marette, A., and Ortiz, P.A. (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J. 8, 43–53.

    PubMed  CAS  Google Scholar 

  5. Charron, M. J., Katz, E. B., and Olson, A. L. (1999) GLUT4 gene regulation and manipulation. J. Biol. Chem. 274, 3253–3256.

    PubMed  CAS  Google Scholar 

  6. Charron, M. J., Brosius, F. C., III, Alper, S. L., and Lodish, H. F. (1989) A glucose transport protein expressed predominately in insulin-responsive tissues. Proc. Natl. Acad. Sci. USA 86, 2535–2539.

    PubMed  CAS  Google Scholar 

  7. Birnbaum, M. I. (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57, 305–315.

    PubMed  CAS  Google Scholar 

  8. James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333, 183–185.

    PubMed  CAS  Google Scholar 

  9. James, D. E., Strube, M., and Mueckler, M. (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338, 83–87.

    PubMed  CAS  Google Scholar 

  10. Kaestner, K. H., Christy, R. J., McLenithan, J. C., Braiterman, L. T., Cornelius, P., Pekala, P. J., et al. (1989) Sequences, tissue distribution and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 86, 3150–3154.

    PubMed  CAS  Google Scholar 

  11. Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., et al. (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem. 264, 7776–7779.

    PubMed  CAS  Google Scholar 

  12. Liu, M. L., Olson, A. L., Moye-Rowley, W. S., Buse, J. B., Bell, G. I., and Pessin, J. E. (1992) Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J. Biol. Chem. 267, 11,673–11,676.

    CAS  Google Scholar 

  13. Ikemoto, S., Thompson, K. S., Itakura, H., Lane, M. D., and Ezaki, O. (1995) Expression of an insulin-responsive glucose transporter (GLUT4) minigene in transgenic mice: effect of exercise and role in, glucose homeostasis. Proc. Natl. Acad. Sci. USA 92, 865–869.

    PubMed  CAS  Google Scholar 

  14. Gibbs, E. M., Stock, J. L., McCoid, S. C., Stukenbrok, H. A., Pessin, J. E., Stevenson, R. W. et al. (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J. Clin. Invest. 95, 1512–1518.

    Article  PubMed  CAS  Google Scholar 

  15. Tsao, T. S., Burcelin, R., Katz, E. B., Huang, L., and Charron, M. J. (1996) Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes 45, 28–36.

    PubMed  CAS  Google Scholar 

  16. Hansen, P. A., Gulve, E. A., Marshall, B. A., Gao, J., Pessin, J. E., Holloszy, J. O., et al. (1995) Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J. Biol. Chem. 270, 1679–1684.

    PubMed  CAS  Google Scholar 

  17. Katz, E. B., Stenbit, A. E., Hatton, K., DePhino, R., and Charron, M. J. (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4 Nature 377, 151–155.

    PubMed  CAS  Google Scholar 

  18. Rossetti, L., Stenbit, A. E., Chen, W., Hu, M., Barzilai, N., Katz, E. B., et al. (1997) Peripheral but not hepatic insulin resistance in mice with one disrupted allele of the glucose transporter type 4 (GLUT4) gene. J. Clin. Invest. 100, 1831–1839.

    PubMed  CAS  Google Scholar 

  19. Abel, E. D., Peroni, O., Kim, J. K., Kim Y. B., Boss, O., Hadro, E., et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733.

    PubMed  CAS  Google Scholar 

  20. Jhun, B. H., Rampal, A. L., Liu, H., Lachaal, M., and Jung, C. Y. (1992) Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. J. Biol. Chem. 268, 17,710–17,715.

    Google Scholar 

  21. Czech, M. P., and Buxton, J. M. (1993) Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J. Biol. Chem. 268, 9187–9190.

    PubMed  CAS  Google Scholar 

  22. Satoh, S., Nishimura, H., Clark, A. E., Kozka, I. J., Vannucci, S. J., Simpson, I. A., et al (1993) Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J. Biol. Chem. 268, 17,820–17,829.

    CAS  Google Scholar 

  23. Yang, J., and Holman, G. D. (1993) Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J. Biol. Chem. 268, 4600–4603.

    PubMed  CAS  Google Scholar 

  24. Czech, M. P. and Corvera, S. (1999) Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274, 1865–1868.

    PubMed  CAS  Google Scholar 

  25. Rea, S. and James, D. E. (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46, 1667–1677.

    PubMed  CAS  Google Scholar 

  26. Pessin, J. E., Thurmond, D. C., Elmendorf, J. S., Coker, K. J., and Okada, S. (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! location! location! J. Biol. Chem. 274, 2593–2596.

    PubMed  CAS  Google Scholar 

  27. Kandror, K. V. and Pilch, P. F. (1996) Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. 271, E1-E14.

    PubMed  CAS  Google Scholar 

  28. Summers, S. A., Yin, V. P., Whiteman, E. L., Garza, L. A., Cho, H., Tuttle, R. L., et al. (1999) Signaling pathways mediating insulin-stimulated glucose transport. Ann. NY Acad. Sci. 892, 169–186.

    PubMed  CAS  Google Scholar 

  29. Holman, G. D. and Cushman, S. W. (1994) Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells. BioEssays 16, 753–759.

    PubMed  CAS  Google Scholar 

  30. Pessin, J. E. and Saltiel, A. R. (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 106, 165–169.

    PubMed  CAS  Google Scholar 

  31. Baumann, C. A. and Saltiel, A. R. (2001) Spatial compartmentalization of signal transduction in insulin action. BioEssays 23, 215–222.

    PubMed  CAS  Google Scholar 

  32. Lee, J. S. and Pilch, P. F. (1994) The insulin receptor—structure, function, and signaling. Am. J. Physiol. 266, C319-C334.

    PubMed  CAS  Google Scholar 

  33. White, M. and Kahn, C. (1994) The insulin signaling system. J. Biol. Chem. 269, 1–4.

    PubMed  CAS  Google Scholar 

  34. Cheatham, B. and Kahn, C. R. (1995) Insulin action and the insulin signaling network. Endocr. Rev. 16, 117–142.

    PubMed  CAS  Google Scholar 

  35. Virkamaki, A., Ueki, K., and Kahn, C. R. (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 103, 931–943.

    PubMed  CAS  Google Scholar 

  36. White, M. F. (1998) The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog. Horm. Res. 53, 119–138.

    PubMed  CAS  Google Scholar 

  37. Liu, F. and Roth, R. A. (1998) Binding of SH2 containing proteins to the insulin receptor: a new way for modulating insulin signalling. Mol. Cell. Biochem. 182, 73–78.

    PubMed  CAS  Google Scholar 

  38. Goldfine, I. D. (1987) The insulin receptor; molecular biology and transmembrane signaling. Endocr. Rev. 8, 235–255.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor, S. I., Cama, A., Accili, D., Barbetti, F., Quon, M. J., De La Luz Sierra, M., et al. (1992) Mutations in the insulin receptor gene. Endocr. Rev. 13, 566–595.

    PubMed  CAS  Google Scholar 

  40. Frattali, A. L. and Pessin, J. E. (1993) Molecular defects of insulin/IGF-1 receptor transmembrane signaling. Ann. NY Acad. Sci. 687, 77–89.

    PubMed  CAS  Google Scholar 

  41. Czech, M. P. (1985) The nature and regulation of the insulin receptor: structure and function. Annu. Rev. Physiol. 47, 357–381.

    PubMed  CAS  Google Scholar 

  42. Kahn, C. R. (1985) The molecular mechanism of insulin action. Annu. Rev. Med. 36, 429–451.

    PubMed  CAS  Google Scholar 

  43. Frattali, A. L. and Pessin, J. E. (1993) Relationship between α subunit ligand occupancy and β subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J. Biol. Chem. 268, 7393–7400.

    PubMed  CAS  Google Scholar 

  44. Lee, J., O'Hare, T., Pilch, P. F., and Shoelson, S. E. (1993) Insulin receptor autophosphorylation occurs asymmetrically. J. Biol. Chem. 268, 4092–4098.

    PubMed  CAS  Google Scholar 

  45. Yu, K.-T. and Czech, M. P. (1986) Tyrosine phosphorylation of insulin receptor β subunit activates the receptor tyrosine kinase in intact H-35 hepatoma cells. J. Biol. Chem. 261, 4715–4722.

    PubMed  CAS  Google Scholar 

  46. White, M. F., Shoelson, S. E., Keutmann, H., and Kahn, C. R. (1988) A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin recepton. J. Biol. Chem. 263, 2969–2980.

    PubMed  CAS  Google Scholar 

  47. Kohanski, R. A. and Lane, M. D. (1986) Kinetic evidence for activating and non-activating components of autophosphorylation of the insulin receptor protein kinase. Biochem. Biophys. Res. Commun. 134, 1312–1318.

    PubMed  CAS  Google Scholar 

  48. Klein, H. H., Freidenberg, G. R., Kladde, M., and Olefsky, J. M. (1986) Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. J. Biol. Chem. 261, 4691–4697.

    PubMed  CAS  Google Scholar 

  49. Flores-Riveros, J. R., Sibley, E., Kastelic, T., and Lane, M. D. (1989) Substrate phosphorylation catalyzed by the insulin receptor tyrosine kinase. J. Biol. Chem. 264, 21,557–21,572.

    CAS  Google Scholar 

  50. White, M. F. (1997) The insulin signalling system and the IRS proteins. Diabetologia 40, S2–517.

    PubMed  CAS  Google Scholar 

  51. Yenush, L. and White, M. F. (1997) The IRS-signalling system during insulin and cytokine action. BioEssays 19, 491–500.

    PubMed  CAS  Google Scholar 

  52. Ogawa, W., Matozaki, T., and Kasuga, M. (1998) Role of binding proteins to IRS-1 in insulin signalling. Mol. Cell. Biochem. 182, 13–22.

    PubMed  CAS  Google Scholar 

  53. White, M. F. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182, 3–11.

    PubMed  CAS  Google Scholar 

  54. Hunter, T. (2000) Sighaling-2000 and beyond. Cell 100, 113–127.

    PubMed  CAS  Google Scholar 

  55. Araki, E., Lipes, M. A., Patti, M. E., Bruning, J. C., Haag, B., Johnson, R. S., et al. (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene, Nature 372, 186–190.

    PubMed  CAS  Google Scholar 

  56. Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., et al. (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186.

    PubMed  CAS  Google Scholar 

  57. Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904.

    PubMed  CAS  Google Scholar 

  58. Davis, R. J. (1995) Protein, nucleotide transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467.

    PubMed  CAS  Google Scholar 

  59. Kyriakis, J. M. and Avruch, J. (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18, 567–577.

    PubMed  CAS  Google Scholar 

  60. Schlessinger, J. (1994) SH2/SH3 signaling proteins. Curr. Opin. Genet. Dev. 4, 25–30.

    PubMed  CAS  Google Scholar 

  61. Schlessinger, J. and Bar-Sagi, D. (1994) Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harbor Symp. Quant. Biol. 59, 173–179.

    PubMed  CAS  Google Scholar 

  62. Avruch, J. (1998) Insulin signal transduction through protein kinase cascades. Mol. Cell. Biochem. 182, 31–48.

    PubMed  CAS  Google Scholar 

  63. Yuryev, A. and Wennogle, L. P. (1998) The RAF family: an expanding network of post-translational controls and protein-protein interaction. Cell Res. 8, 81–98.

    PubMed  CAS  Google Scholar 

  64. Robinson, M. J. and Cobb, M. H. (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell. Biol. 9, 180–186.

    PubMed  CAS  Google Scholar 

  65. Ouwens, D. M., Vanderzon, G. C. M., Pronk, G. J., Bos, J. L., Moller, W., Cheatham, B., et al. (1994) A mutant insulin receptor induces formation of a Shc- growth factor receptor bound protein 2 (Grb2) complex and p21 (ras)-GTP without detectable interaction of insulin receptor substrate 1 (IRS1) with Grb2—evidence for IRS1-independent p21 (ras)-GTP formation. J. Biol. Chem. 269, 33,116–33,122.

    CAS  Google Scholar 

  66. Yamauchi, K. and Pessin, J. E. (1994) Insulin receptor substrate-1 (IRS1) and Shc compete for a limited pool of Grb2 in mediating insulin downstream signaling. J. Biol. Chem. 269, 31,107–31,114.

    CAS  Google Scholar 

  67. Pruett, W., Yuan, Y., Rose, E., Batzer, A. G., Harada, N., and Skolnik, E. Y. (1995) Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin. Mol. Cell. Biol. 15, 1778–1785.

    PubMed  CAS  Google Scholar 

  68. Takada, T., Matozaki, T., Takeda, H., Fukunaga, K., Noguchi, T., Fujioka, Y., et al. (1998) Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J. Biol. Chem. 273, 9234–9242.

    PubMed  CAS  Google Scholar 

  69. Fukunaga, K., Noguchi, T., Takeda, H., Matozaki, T., Hayashi, Y., Itoh, H., et al. (2000) Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J. Biol. Chem. 275, 5208–5213.

    PubMed  CAS  Google Scholar 

  70. Kharitonenkov, A., Chen, Z., Sures, I., Wang, H., Schilling, J., and Ullrich, A. (1997) A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386, 181–186.

    PubMed  CAS  Google Scholar 

  71. Hu, Q., Klippel, A., Muslin, A. J., Fantl, W. J., and Williams, L. J. (1995) Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 268, 100–102.

    PubMed  CAS  Google Scholar 

  72. Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D., and Downward, J. (1996) Activation of phospho-inositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442–2451.

    PubMed  CAS  Google Scholar 

  73. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., et al. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532.

    PubMed  CAS  Google Scholar 

  74. Rubio, I., Rodriguez-Viciana, P., Downward, J., and Wetzker, R. (1997) Interaction of Ras with phosphoinositide 3-kinase gamma. Biochem. J. 326, 891–895.

    PubMed  CAS  Google Scholar 

  75. Asano, T., Kanda, A., Katagiri, H., Nawano, M., Ogihara, T., Inukai, K., et al. (2000) p110beta is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. J. Biol. Chem. 25, 17,671–17,676.

    Google Scholar 

  76. Katagiri, H., Asano, T., Ishihara, H., Inukai, K., Shibasaki, Y., Kikuchi, M., et al. (1996) Overexpression of catalytic subunit p110α of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 271, 16,987–16,990.

    CAS  Google Scholar 

  77. Otsu, M., Hiles, I., Gout, I., Fry, M. J., Ruiz-Larrea, F., Panayotou, G., et al. (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle T/pp60c-src complexes, and PI3-kinase. Cell 65, 91–104.

    PubMed  CAS  Google Scholar 

  78. Pons, S., Asano, T., Glasheen, E., Miralpeix, M., Zhang, Y. T., Fisher, T. L., et al. (1995) The structure and function of p55(PIK) reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol. Cell. Biol. 15, 4453–4465.

    PubMed  CAS  Google Scholar 

  79. Antonetti, D. A., Algenstaedt, P., and Kahn, C. R. (1996) Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell. Biol. 16, 2195–2203.

    PubMed  CAS  Google Scholar 

  80. Fruman, D. A., Cantley, L. C., and Carpenter, C. L. (1996) Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 37, 113–121.

    PubMed  CAS  Google Scholar 

  81. Inukai, K., Anai, M., Van Breda, E., Hosaka, T., Katagiri, H., Funaki, M., et al. (1996) A novel 55-kDa regulatorysubunit for phosphatidylinositol 3-kinase structurally similar to p55PIK Is generated by alternative splicing of the p85alpha gene. J. Biol. Chem. 271, 5317–5320.

    PubMed  CAS  Google Scholar 

  82. Alessi, D. R. and Downes, C. P. (1998) The role of PI 3-kinase in insulin action. Biochim. Biophys. Acta 1436, 151–164.

    PubMed  CAS  Google Scholar 

  83. Backer, J. M., Myers, M. G., Jr., Shoelson, S. E., Chin, D. J., Sun, X.-J., Miralpeix, M., et al. (1992) Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479.

    PubMed  CAS  Google Scholar 

  84. Myers, M. G., Backer, J. M., Sun, X. J., Shoelson, S., Hu, P., Schlessinger, J., et al. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 89, 10,350–10,354.

    CAS  Google Scholar 

  85. Shoelson, S. E., Sivaraja, M., Williams, K. P., Hu, P., Schlessinger, J., and Weiss, M. A. (1993) Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J. 12, 795–802.

    PubMed  CAS  Google Scholar 

  86. Rordorf-Nikolic, T., VanHorn, D. J., Chen, D. X., White, M. F., and Backer, J. M. (1995) Regulation of phosphatidylinositol 3′-kinase bytyrosyl phosphoproteins—Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J. Biol. Chem. 270, 3662–3666.

    PubMed  CAS  Google Scholar 

  87. Fruman, D. A., Rameh, L. E., and Cantley, L. C. (1999) Phosphoinositide binding domains: embracing 3-phosphate. Cell 97, 817–820.

    PubMed  CAS  Google Scholar 

  88. Rameh, L. E. and Cantley, L. C. (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350.

    PubMed  CAS  Google Scholar 

  89. Venkateswarlu, K., Oatey, P. B., Tavare, J. M., and Cullen, P. J. (1998) Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol. 8, 463–466.

    PubMed  CAS  Google Scholar 

  90. Oatey, P. B., Venkateswarlu, K., Williams, A. G., Fletcher, L. M., Foulstone, E. J., Cullen, P. J., et al. (1999) Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochem. J. 344, 511–518.

    PubMed  CAS  Google Scholar 

  91. Yang, C., Watson, R. T., Elmendorf, J. S., Sacks, D. B. and Pessin, J. E. (2000) Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. Mol. Endocrinol. 14, 317–326.

    PubMed  CAS  Google Scholar 

  92. Le Good, J. A., Ziegler, W. H., Parekh, D. B., Alessi, D. R., Cohen, P., and Parker, P. J. (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 2042–2045.

    PubMed  Google Scholar 

  93. Toker, A. and Newton, A. C. (2000) Cellular signaling: pivoting around PDK-1. Cell 103, 185–188.

    PubMed  CAS  Google Scholar 

  94. Wymann, M. P. and Pirola, L. (1998) Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127–150.

    PubMed  CAS  Google Scholar 

  95. Duronio, V., Scheid, M. P. and Ettinger, S. (1998) Downstream signalling events regulated by phosphatidylinositol 3-kinase activity. Cell. Signal 10, 233–239.

    PubMed  CAS  Google Scholar 

  96. Vanhaesebroeck, B. and Alessi, D. R. (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576.

    PubMed  CAS  Google Scholar 

  97. Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J., and Kahn, C. R. (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis and glucose transporter translocation. Mol. Cell. Biol. 14, 4902–4911.

    PubMed  CAS  Google Scholar 

  98. Sharma, P. M., Egawa, K., Huang, Y., Martin, J. L., Huvar, I., Boss, G. R., et al. (1998) Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J. Biol. Chem. 273, 18,528–18,537.

    CAS  Google Scholar 

  99. Sakaue, H., Ogawa, W., Takata, M., Kuroda, S., Kotani, K., Matsumoto, M., et al. (1997) Phosphoinositide 3-kinase is required for insulin-induced but not for growth hormoneor hyperosmolarity-induced glucose uptake in 3T3-L1 adipocytes. Mol. Endocrinol. 11, 1552–1562.

    PubMed  CAS  Google Scholar 

  100. Vollenweider, P., Clodi, M., Martin, S. S., Imamura, T., Kavanaugh, W. M., and Olefsky, J. M. (1999) An SH2 domain-containing 5′ inositolphosphatase inhibits insulin-induced GLUT4 translocation and growth factor-induced actin filament rearrangement. Mol. Cell. Biol. 19, 1081–1091.

    PubMed  CAS  Google Scholar 

  101. Nakashima, N., Sharma, P. M., Imamura, T., Bookstein, R., and Olefsky, J. M. (2000) The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J. Biol. Chem. 275, 12,889–12,895.

    CAS  Google Scholar 

  102. Okada, T., Kawano, Y., Sakakibara, R., Hazeki, O., and Ui, M. (1994) Essential role of phophatidylinositol 3-kinase in insulin-induced glucose transport and antilypolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568–3573.

    PubMed  CAS  Google Scholar 

  103. Martin, S. S., Haruta, T., Morris, A. J., Klippel, A., Williams, L. T., and Olefsky, J. M. (1996) Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes. J. Biol. Chem. 271, 17,605–17,608.

    CAS  Google Scholar 

  104. Frevert, E. U. and Kahn, B. B. (1997) Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 190–198.

    PubMed  CAS  Google Scholar 

  105. Frevert, E. U., Bjorbaek, C., Venable, C. L., Keller, S. R., and Kahn, B. B. (1998) Targeting of constitutively active phosphoinositide 3-kinase to GLUT4-containing vesicles in 3T3-L1 adipocytes. J. Biol. Chem. 273, 25,480–25,487.

    CAS  Google Scholar 

  106. Terauchi, Y., Tsuji, Y., Satoh, S., Minoura, H., Murakami, K., Okuno, A., et al. (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat. Genet. 21, 230–235.

    PubMed  CAS  Google Scholar 

  107. Fruman, D. A., Snapper, S. B., Yballe, C. M., Davidson, L., Yu, J. Y., Alt, F. W., et al. (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283, 393–397.

    PubMed  CAS  Google Scholar 

  108. Fruman, D. A., Mauvais-Jarvis, F., Pollard, D. A., Yballe, C. M., Brazil, D., et al. (2000) Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat. Genet. 26, 379–382.

    PubMed  CAS  Google Scholar 

  109. Kohn, A. D., Summers, S. A., Birnbaum, M. J., and Roth, R. A. (1996) Expression of a constitutively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31,372–31,378.

    CAS  Google Scholar 

  110. Cong, L. N., Chen, H., Li, Y., Zhou, L., McGibbon, M. A., Taylor, S. I., et al. 1997 Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11, 1881–1890.

    PubMed  CAS  Google Scholar 

  111. Hajduch, E., Alessi, D. R., Hemmings, B. A., and Hundal, H. S. (1998) Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes 47, 1006–1013.

    PubMed  CAS  Google Scholar 

  112. Kohn, A. D., Barthel, A., Kovacina, K. S., Boge, A., Wallach, B., Summers, S. A., et al. (1998) Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J. Biol. Chem. 273, 11,937–11,943.

    CAS  Google Scholar 

  113. Wang, Q., Somwar, R., Bilan, P. J., Liu, Z., Jin, J., Woodgett, J. R., et al. (1999) Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol. 19, 4008–4018.

    PubMed  CAS  Google Scholar 

  114. Heller-Harrison, R. A., Morin, M., Guilherme A., and Czech, M. P. (1996) Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4-containing vesicles. J. Biol. Chem. 271, 10,200–10,204.

    CAS  Google Scholar 

  115. Kupriyanova, T. A. and Kandror, K. V. (1999) Akt-2 binds to Glut4-containing vesicles and phosphorylates their component proteins in response to insulin. J. Biol. Chem. 274, 1458–1464.

    PubMed  CAS  Google Scholar 

  116. Calera, M. R., Martinez, C., Liu, H., Jack, A. K., Birnbaum, M. J., and Pilch, P. F. (1998) Insulin increases the association of Akt-2 with Glut4-containing vesicles. J. Biol. Chem. 273, 7201–7204.

    PubMed  CAS  Google Scholar 

  117. Kitamura, T., Ogawa, W., Sakaue, H., Hino, Y., Kuroda, S., Takata, M., et al. (1998) Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol. Cell. Biol. 18, 3708–3717.

    PubMed  CAS  Google Scholar 

  118. Kotani, K., Ogawa, W., Matsumoto, M., Kitamura, T., Sakaue, H., Hino, Y., et al. (1998) Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol. Cell. Biol. 18, 6971–6982.

    PubMed  CAS  Google Scholar 

  119. Kotani, K., Ogawa, W., Hashiramoto, M., Onishi, T., Ohno, S., and Kasuga, M. (2000) Inhibition of insulin-induced glucose uptake by atypical protein kinase C isotype-specific interacting protein in 3T3-L1 adipocytes. J. Biol. Chem. 275, 26,390–26,395.

    CAS  Google Scholar 

  120. Standaert, M. L., Bandyopadhyay, G., Perez, L., Price, D., Galloway, L., Poklepovic, A., et al. (1999) Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J. Biol. Chem. 274, 25,308–25,316.

    CAS  Google Scholar 

  121. Bandyopadhyay, G., Standaert, M. L., Zhao, L., Yu, B., Avignon, A., Galloway, L., et al. (1997) Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J. Biol. Chem. 272, 2551–2558.

    PubMed  CAS  Google Scholar 

  122. Bandyopadhyaya, G., Standaert, M. L., Kikkawa, U., Ono, Y., Moscat, J., and Farese, R. V. (1999) Effects of transiently expressed atypical (zeta, lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C-zeta and C-lambda. Biochem. J. 337, 461–470.

    Google Scholar 

  123. Chen, D., Elmendorf, J. S., Olson, A. L., Li, X., Earp, H. S., and Pessin, J. E. (1997) Osmotic shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathway. J. Biol. Chem. 272, 27,401–27,410.

    CAS  Google Scholar 

  124. Kanzaki, M., Watson, R. T., Artemyev, N. O., and Pessin, J. E. (2000) The trimeric GTP-binding protein (G(q)/G(11)) alpha subunit is required for insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes. J. Biol. Chem. 275, 7167–7175.

    PubMed  CAS  Google Scholar 

  125. Suzuki, Y., Shibata, H., Inoue, S., and Kojima, I. (1992) Stimulation of glucose transport by guanine nucleotides in permeabilized rat adipocytes. Biochem. Biophys. Res. Commun. 189, 572–580.

    PubMed  CAS  Google Scholar 

  126. Elmendorf, J. S., Chen, D., and Pessin, J. E. (1998) Guanosine 5′-O-(3-thiotriphosphate) (GTPgammaS) stimulation of GLUT4 translocation is tyrosine kinase-dependent. J. Biol. Chem. 273, 13,289–13,296.

    CAS  Google Scholar 

  127. Baldini, G., Holman, R., Charron, M. J., and Lodish, H. F. (1991) Insulin and nonhydrolyzable GTP analogues induce translocation of GLUT4 to the plasma membrane in α-toxin-permeablilized rat adipose cells. J. Biol. Chem. 266, 4037–4040.

    PubMed  CAS  Google Scholar 

  128. Imamura, T., Vollenweider, P., Egawa, K., Clodi, M., Ishibashi, K., Nakashima, N., et al. (1999) G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 19, 6765–6774.

    PubMed  CAS  Google Scholar 

  129. Imamura, T., Ishibashi, K., Dalle, S., Ugi, S., and Olefsky, J. M. (1999) Endothelin-1-induced GLUT4 translocation is mediated via G alpha (q/11) protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J. Biol. Chem. 274, 33,691–33,695.

    CAS  Google Scholar 

  130. Yeh, J. I., Gulve, E. A., Rameh, L., and Birnbaum, M. J. (1995) The effects of wortmannin on rat skeletal muscle—dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270, 2107–2111.

    PubMed  CAS  Google Scholar 

  131. Lee, A. D., Hansen, P. A., and Holloszy, J. O. (1995) Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 361, 51–54.

    PubMed  CAS  Google Scholar 

  132. Lund, S., Holman, G. D., Schmitz, O., and Pedersen, O. (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl. Acad. Sci. USA 92, 5817–5821.

    PubMed  CAS  Google Scholar 

  133. Hayashi, T., Hirshman, M. F., Kurth, E. J., Winder, W. W., and Goodyear, L. J. (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47, 1369–1373.

    PubMed  CAS  Google Scholar 

  134. Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., and Winder, W. W. (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 1667–1671.

    PubMed  CAS  Google Scholar 

  135. Buhl, E. S., Jessen, N., Schmitz, O., Pedersen, S. B., Pedersen, O., Holman, G. D., et al. (2001) Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofusanoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50, 12–17.

    PubMed  CAS  Google Scholar 

  136. Kishi, K., Yuasa, T., Minami, A., Yamada, M., Hagi, A., Hayashi, H., et al. (2000) AMP-Activated protein kinase is activated by the stimulations of G(q)-coupled receptors. Biochem. Biophys. Res. Commun. 276, 16–22.

    PubMed  CAS  Google Scholar 

  137. Krook, A., Whitehead, J. P., Dobson, S. P., Griffiths, M. R., Ouwens, M., Baker, C., et al. (1997) Two naturally occurring insulin receptor tyrosine kinase domain mutants provide evidence that phosphoinositide 3-kinase activation alone is not sufficient for the mediation of insulin's metabolic and mitogenic effects. J. Biol. Chem. 272, 30,208–30,214.

    CAS  Google Scholar 

  138. Isakoff, S. J., Taha, C., Rose, E., Marcusohn, J., Klip, A., and Skonik, E. Y. (1995) The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc. Natl. Acad. Sci. USA 92, 10,247–10,251.

    CAS  Google Scholar 

  139. Guilherme, A. and Czech, M. P. (1998) Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by betal-integrin signaling in rat adipocytes. J. Biol. Chem. 273, 33,119–33,122.

    CAS  Google Scholar 

  140. Jiang, T., Sweeney, G., Rudolf, M. T., Klip, A. Traynor-Kaplan, A., and Tsien, R. Y. (1998) Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 11,017–11,024.

    CAS  Google Scholar 

  141. Ribon, V. and Saltiel, A. R. (1997) Insulin stimulates tyrosine phosphorylation of the protooncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem. J. 324, 839–845.

    PubMed  CAS  Google Scholar 

  142. Sawasdikosol, S., Pratt, J. C., Meng, W., Eck, M. J., and Burakoff, S. J. (2000) Adapting to multiple personalities Cbl is also a RING finger ubiquitin ligase. Biochim. Biophys. Acta 1471, M1-M12.

    PubMed  CAS  Google Scholar 

  143. Ribon, V., Herrera, R., Kay, B. K., and Saltiel, A. R. (1998) A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesions. J. Biol. Chem. 273, 4073–4080.

    PubMed  CAS  Google Scholar 

  144. Ribon, V., Printen, J. A., Hoffman, N. G., Kay, B. K., and Saltiel, A. R. (1998) A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol. Cell. Biol. 18, 872–879.

    PubMed  CAS  Google Scholar 

  145. Ahmed, Z., Smith, B. J., and Pillay, T. S. (2000) The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett. 475, 31–44.

    PubMed  CAS  Google Scholar 

  146. Moodie, S. A., Alleman-Sposeto, J., and Gustafson, T. A. (1999) Identification of the APS protein as a novel insulin receptor substrate. J. Biol. Chem. 274, 11,186–11,193.

    CAS  Google Scholar 

  147. Galisteo, M. L., Dikic, I., Batzer, A. G., Langdon, W. Y., and Schlessinger, J. (1995) Tyrosine phosphorylation of the c-Cbl protooncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J. Biol. Chem. 270, 20,242–20,245.

    CAS  Google Scholar 

  148. Fukazawa, T., Miyake, S., Band, V., and Band, H. (1996) Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J. Biol. Chem. 271, 14,554–14,559.

    CAS  Google Scholar 

  149. Wang, Y., Yeung, Y. G., Langdon, W. Y., and Stanley, E. R. (1996) c-Cbl is transiently tyrosine-phosphorylated, ubiquitinated and membrane-targeted following CSF-1 stimulation of macrophages. J. Biol. Chem. 271, 17–20.

    PubMed  CAS  Google Scholar 

  150. Yokouchi, M., Kondo, T., Houghton, A., Bartkiewicz, M., Horne, W. C., Zhang, H., et al. (1999) Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31,707–31,712.

    CAS  Google Scholar 

  151. Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T., and Liu, Y. C. (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312.

    PubMed  CAS  Google Scholar 

  152. Baumann, C. A., Chokshi, N., Saltiel, A. R., and Ribon, V. (2000) Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J. Biol. Chem. 275, 9131–9135.

    PubMed  CAS  Google Scholar 

  153. Ribon, V., Johnson, J. H., Camp, H. S., and Saltiel, A. R. (1998) Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc. Natl. Acad. Sci. USA 95, 14,751–14,756.

    CAS  Google Scholar 

  154. Baumann, C. A., Ribon, V., Kanzaki, M., Thurmond, D. C., Mora, S., Shigematsu, S., et al. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207.

    PubMed  CAS  Google Scholar 

  155. Nystrom, F. H., Chen, H., Cong, L. N., Li, Y., and Quon, M. J. (1999) Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol. Endocrinol. 13, 2013–2024.

    PubMed  CAS  Google Scholar 

  156. Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., et al. (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961–1971.

    PubMed  CAS  Google Scholar 

  157. Bickel, P. E., Scherer, P. E., Schnitzer, J. E., Oh, P., Lisanti, M. P., and Lodish, H. F. (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272, 13,793–13,802.

    CAS  Google Scholar 

  158. Volonte, D., Galbiati, F., Li, S., Nishiyama, K., Okamoto, T., and Lisanti, M. P. (1999) Flotillins/cavetellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 274, 12,702–12,709.

    CAS  Google Scholar 

  159. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    PubMed  CAS  Google Scholar 

  160. Kurzchalia, T. V. and Parton, R. G. (1999) Membrane microdomains and caveolae. Curr. Opin. Cell. Biol. 11, 424–431.

    PubMed  CAS  Google Scholar 

  161. Anderson, R. G. (1993) Caveolae: where incoming and outgoing messengers meet. Proc. Natl. Acad. Sci. USA 90, 10,909–10,913.

    CAS  Google Scholar 

  162. Schlegel, A., Volonte, D., Engelman, J. A., Galbiati, F., Mehta, P., Zhang, X. L., et al. (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10, 457–463.

    PubMed  CAS  Google Scholar 

  163. Muller, G. and Frick, W. (1999) Signlling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. Cell. Mol. Life Sci. 56, 945–970.

    PubMed  CAS  Google Scholar 

  164. Stahlhut, M., Sandvig, K., and van Deurs, B. (2000) Caveolae: uniform structures with multiple functions in signaling, cell growth and cancer. Exp. Cell Res. 261, 111–118.

    PubMed  CAS  Google Scholar 

  165. Shaul, P. W. and Anderson, R. G. (1998) Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275, L843-L851

    PubMed  CAS  Google Scholar 

  166. Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. (1998) Caveolin, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422.

    PubMed  CAS  Google Scholar 

  167. Couet, J., Sargiacomo, M., and Lisanti, M. P. (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30,429–30,438.

    CAS  Google Scholar 

  168. Moffett, S., Brown, D. A., and Linder, M. E. (2000) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198.

    PubMed  CAS  Google Scholar 

  169. Shaul, P. W., Smart, E. J., Robinson, L. J., German, Z., Yuhanna, I. S., Ying, Y., et al. (1996) Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271, 6518–6522.

    PubMed  CAS  Google Scholar 

  170. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C., and Lublin, D. M. (1994) Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell. Biol. 126, 353–363.

    PubMed  CAS  Google Scholar 

  171. Li, S., Couet, J., and Lisanti, M. P. (1996) Src tyrosine kinases, Galpha subunits and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29,182–29,190.

    CAS  Google Scholar 

  172. Wary, K. K., Mariotti, A., Zurzolo, C., and Giancotti, F. G. (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634.

    PubMed  CAS  Google Scholar 

  173. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacom, O. M., and Lisanti, M. P. (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697.

    PubMed  CAS  Google Scholar 

  174. Ro, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., et al. (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell. Biol. 1, 98–105.

    Google Scholar 

  175. Pike, L. J., and Casey, L. (1996) Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolinenriched membrane domains. J. Biol. Chem. 271, 26,453–26,456.

    CAS  Google Scholar 

  176. Pike, L. J. and Miller, J. M. (1998) Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem. 273, 22,298–22,304.

    CAS  Google Scholar 

  177. Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G., and Hancock, J. F. (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell. Biol. 3, 368–375.

    PubMed  CAS  Google Scholar 

  178. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., et al. (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell. Biol. 1, 98–105.

    PubMed  CAS  Google Scholar 

  179. Hancock, J. F., Paterson, H., and Marshall, C. J. (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139.

    PubMed  CAS  Google Scholar 

  180. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177.

    PubMed  CAS  Google Scholar 

  181. Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C., and Lodish, H. F. (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolinrich vesicles. J. Cell. Biol. 127, 1233–1243.

    PubMed  CAS  Google Scholar 

  182. Song, K. S., Scherer, P. E., Tang, Z., Okamoto, T., Li, S., Chafel, M., et al. (1996) Expression of caveolin-3 in skeletal, cardiac and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271, 15,160–15,165.

    CAS  Google Scholar 

  183. Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., et al. (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272, 29,337–29,346.

    CAS  Google Scholar 

  184. Smith, R. M., Harada, S., Smith, J. A., Zhang, S., and Jarett, L. (1998) Insulin-induced protein tyrosine phosphorylation cascade and signalling molecules are localized in a caveolin-enriched cell membrane domain. Cell Signal. 10, 355–362.

    PubMed  CAS  Google Scholar 

  185. Mastick, C. C. and Saltiel, A. R. (1997) Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J. Biol. Chem. 272, 20,706–20,714.

    CAS  Google Scholar 

  186. Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M. P., Myers, M. G., and Ishikawa, Y. (1998) Caveolin is an activator of insulin receptor signaling. J. Biol. Chem. 273, 26,962–26,968.

    CAS  Google Scholar 

  187. Parpal, S., Karlsson, M., Thorn, H., and Stralfors, P. (2000) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via IRS-1, but not for MAP-kinase control. J. Biol. Chem. 56, 11–12.

    Google Scholar 

  188. Chiang, S.-H., Baumann, C. A., Kanzaki, M., Watson, R. T., Thurmond, D. C., Macara, I. G., et al. (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of the small GTP binding protein TC10. Nature 410, 944–948.

    PubMed  CAS  Google Scholar 

  189. Reedquist, K. A., Fukazawa, T., Panchamoorthy, G., Langdon, W. Y., Shoelson, S. E., Druker, B. J., et al. (1996) Stimulation through the T cell receptor induces Cbl association with Crk proteins and the guanine nucleotide exchange protein C3G. J. Biol. Chem. 271, 8435–8442.

    PubMed  CAS  Google Scholar 

  190. Scaife, R. M. and Langdon, W. Y. (2000) c-Cbl localizes to actin lamellae and regulates lamellipodia formation and cell morphology. J. Cell. Sci. 113, (Pt. 2), 215–226.

    PubMed  CAS  Google Scholar 

  191. Uemura, N. and Griffin, J. D. (1999) The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J. Biol. Chem. 274, 37,525–37532.

    CAS  Google Scholar 

  192. Zhu, T., Goh, E. L., LeRoith, D., and Lobie, P. E. (1998) Growth hormone stimulates the formation of a multiprotein signaling complex involving p130(Cas) and CrkII. Resultant activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). J. Biol. Chem. 273, 33,864–33,875.

    CAS  Google Scholar 

  193. Kyono, W. T., de Jong, R., Park, R. K., Liu, Y., Heisterkamp, N., Groffen, J., et al. (1998) Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI). J. Immunol. 161, 5555–5563.

    PubMed  CAS  Google Scholar 

  194. Ishiki, M., Sasaoka, T., Ishihara, H., Imamura, T., Usui, I., Takata, Y., et al. (1997) Evidence for functional roles of Crk-II in insulin and epidermal growth factor signaling in Rat-1 fibroblasts overexpressing insulin receptors. Endocrinology 138, 4950–4958.

    PubMed  CAS  Google Scholar 

  195. Neudauer, C. L., Joberty, G., Tatsis, N., and Macara, I. G. (1998) Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr. Biol. 8, 1151–1160.

    PubMed  CAS  Google Scholar 

  196. Imagawa, M., Tsuchiya, T., and Nishihara, T. (1999) Identification of inducible genes at the early stage of adipocyte differentiation of 3T3-L1 cells. Biochem. Biophys. Res. Commun. 254, 299–305.

    PubMed  CAS  Google Scholar 

  197. Watson, R. T., Shigematsu, S., Chiang, S.-H., Mora, S., Kanzaki, M., Macara, I. G., Saltiel, A. R., and Pessin, J. E. (2001) Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J. Cell Biol. 154, 829–840.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Pessin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzaki, M., Pessin, J.E. Signal integration and the specificity of insulin action. Cell Biochem Biophys 35, 191–209 (2001). https://doi.org/10.1385/CBB:35:2:191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:2:191

Index Entries

Navigation