Skip to main content
Log in

S641 contributes HERG K+ channel inactivation

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, I Kr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of I Kr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG, possesses several serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation. We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation, permeation, and rectification of HERG channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanguinetti, M. C. and Jurkiewicz, N. K. (1991) Delayed rectifier outward K+ current is composed of two currents in guinea pig atria cells. Am. J. Physiol. 260, H393-H399.

    PubMed  CAS  Google Scholar 

  2. Sanguinetti, M. C., Jiang, C., Curran, M. E., et al. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307.

    Article  PubMed  CAS  Google Scholar 

  3. Trudeau, M. C., Warmke, J. W., Ganetzky, B., et al. (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95.

    Article  PubMed  CAS  Google Scholar 

  4. Curran, M. E., Splawski, I., Timothy, K. M., et al. (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803.

    Article  PubMed  CAS  Google Scholar 

  5. Tseng, G. N. (2001) I(Kr): the hERG channel. J. Mol. Cell. Cardiol. 33, 835–849.

    Article  PubMed  CAS  Google Scholar 

  6. Sanguinetti, M. C. and Jurkiewicz, N. K. (1990) Two components of the delayed rectifier K+ current: differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 96, 195–215.

    Article  PubMed  CAS  Google Scholar 

  7. Rock, K. L., Gramm, L., Rothstein, L., et al. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, P. L., Baukrowitz, T., and Yellen, G. (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379, 833–836.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, D. T., Tibbs, G. R., and Siegelbaum, S. A. (1996) Subunit stoichiometry of cyclic nucleotide-gated channels and effects of subunit order on channel function. Neuron 16, 983–990.

    Article  PubMed  CAS  Google Scholar 

  10. Spector, P. S., Curran, M. E., Zou, A., et al. (1996) Fast inactivation causes rectification of the IKr channel. J. Gen. Physiol. 107, 611–619.

    Article  PubMed  CAS  Google Scholar 

  11. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxyterminal region. Neuron 7, 547–556.

    Article  PubMed  CAS  Google Scholar 

  12. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538.

    Article  PubMed  CAS  Google Scholar 

  13. Demo, S. D., and Yellen, G. (1991) The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753.

    Article  PubMed  CAS  Google Scholar 

  14. Choi, K. L., Aldrich, R. W., and Yellen, G. (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl. Acad. Sci. USA 88, 5092–5095.

    Article  PubMed  CAS  Google Scholar 

  15. Heginbotham, L. and MacKinnon, R. (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483–491.

    Article  PubMed  CAS  Google Scholar 

  16. Panyi, G., Sheng, Z., and Deutsch, C. (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys. J. 69, 896–903.

    PubMed  CAS  Google Scholar 

  17. Schonherr, R. and Heinemann, S. H. (1996) Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J. Physiol. (Lond.) 493, 635–642.

    Google Scholar 

  18. Warmke, J., Drysdate, R., and Ganetzky, B. (1991) A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252, 1560–1562.

    Article  PubMed  CAS  Google Scholar 

  19. Robertson, G. A., Warmke, J. M., and Ganetzky, B. (1996) Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes. Neuropharmacology 35, 841–850.

    Article  PubMed  CAS  Google Scholar 

  20. Herzberg, I. M., Trudeau, M. C., and Robertson, G. A. (1998) Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels. J. Physiol. 511, 3–14.

    Article  PubMed  CAS  Google Scholar 

  21. Ficker, E., Jarolimek, W., Kiehn, J., et al. (1998) Molecular determinants of dofetilide block of HERG K+ channels. Circ. Res. 82, 386–395.

    PubMed  CAS  Google Scholar 

  22. Ulens, C. and Tytgat, J. (2000) Redox state dependency of HERGS631C channel pharmacology: relation to C-type inactivation. FEBS Lett. 474, 111–115.

    Article  PubMed  CAS  Google Scholar 

  23. Zou, A., Xu, Q. P., and Sanguinetti, M. C. (1998) A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J. Physiol. (Lond.) 509, 129–137.

    Article  CAS  Google Scholar 

  24. Fan, J. S., Jiang, M., Dun, W., et al. (1999) Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel. Biophys. J. 76, 3128–3140.

    PubMed  CAS  Google Scholar 

  25. Cui, J., Melman, Y., Palma, E., et al. (2000) Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr. Biol. 10, 671–674.

    Article  PubMed  CAS  Google Scholar 

  26. Kagan, A., Yu, Z., Fishman, G. I., et al. (2000) The dominant negative LQT2 mutation A561V reduces wild-type HERG expression. J. Biol. Chem. 275, 11,241–11,248.

    Article  CAS  Google Scholar 

  27. Bian, J., Cui, J., and McDonald, T. V. (2001) HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ. Res. 89, 1168–1176.

    Article  PubMed  CAS  Google Scholar 

  28. Jurkiewicz, N. K. and Sanguinetti, M. C. (1993) Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Circ. Res. 72, 75–83.

    PubMed  CAS  Google Scholar 

  29. Kiehn, J., Lacerda, A. E., Wible, B., et al. (1996) Molecular physiology and pharmacology of HERG. Single-channel currents and block by dofetilide. Circulation 94, 2572–2579.

    PubMed  CAS  Google Scholar 

  30. Spector, P. S., Curran, M. E., Keating, M. T., et al. (1996) Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ. Res. 78, 499–503.

    PubMed  CAS  Google Scholar 

  31. Lees-Miller, J. P., Duan, Y., Teng, G. Q., et al. (2000) Novel gain-of-function mechanism in K(+) channel-related long-QT syndrome: altered gating and selectivity in the HERG1 N629D mutant [see comments]. Cir.c Res. 86, 507–513.

    CAS  Google Scholar 

  32. Mitcheson, J. S., Chen, J., and Sanguinetti, M. C. (2000) Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J. Gen. Physiol. 115, 229–240.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, S., Morales, M. J., Liu, S., et al. (1997) Modulation of HERG affinity for E-4031 by [K+]o and C-type inactivation. FEBS Lett. 417, 43–47.

    Article  PubMed  CAS  Google Scholar 

  34. Ficker, E., Jarolimek, W., and Brown, A. M. (2001) Molecular determinants of inactivation and dofetilide block in ether a-go-go (EAG) channels and EAG-related K(+) channels. Mol. Pharmacol. 60, 1343–1348.

    PubMed  CAS  Google Scholar 

  35. Liu, J., Zhang, M., Jiang, M., et al. (2002) Structural and functional role of the extracellular s5-p linker in the HERG potassium channel. J. Gen. Physiol. 120, 723–737.

    Article  PubMed  CAS  Google Scholar 

  36. Kiss, L., LoTurco, J., and Korn, S. J. (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263.

    PubMed  CAS  Google Scholar 

  37. Starkus, J. G., Kuschel, L., Rayner, M. D., et al. (1997) Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol., 110, 539–550.

    Article  PubMed  CAS  Google Scholar 

  38. Ogielska, E. M., Zagotta, W. N., Hoshi, T., et al. (1995) Cooperative subunit interactions in C-type inactivation of K channels. Biophys. J. 69, 2449–2457.

    PubMed  CAS  Google Scholar 

  39. Liu, Y., Jurman, M. E., and Yellen, G. (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867.

    Article  PubMed  CAS  Google Scholar 

  40. Yellen, G., Sodickson, D., Chen, T. Y., et al. (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas V. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, JS., Cui, J., Melman, Y. et al. S641 contributes HERG K+ channel inactivation. Cell Biochem Biophys 41, 25–39 (2004). https://doi.org/10.1385/CBB:41:1:025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:1:025

Index Entries

Navigation