Skip to main content
Log in

Molecular mechanisms of cardiac hypertrophy induced by toxicants

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is an end point of chronic cardiac toxicity from a number of toxicants. Doxorubicin, cocaine, acetaldehyde, monocrotaline, and azide are examples of these toxicants, which may induce hypertrophy by increasing oxidants, circulating levels of catecholamines, and hemodynamic load or by inducing hypoxia. We summarize here the major signal transduction pathways and common changes in gene expression found with the classical hypertrophy inducers angiotensin II, endothelin 1, and catecholamines. Activation of G-proteins, calcium signaling, phosphoinositide 3-kinase (PI3K), certain family members of protein kinase Cs (PKCs), and three branches of mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases (JNKs), are important for developing a hypertrophic phenotype in cardiomyocytes. Characteristic changes of gene expression in hypertrophy include the elevated transcription of atrial natriuretic factor (ANF), β-myosin heavy chain (βMHC), skeletal α-actin (SkA), certain variants of integrins and perhaps tubulin genes, and reduced expression of the sarcoplasmic reticulum proteins phospholamban and sarco(endo)plasmic reticulum Ca2+-ATPase 2α (SERCA2α), and of the ryanodine receptors. Although which toxicants induce these molecular changes remains to be tested, increasing lines of evidence support that oxidants play a central role in cardiac hypertrophy. Oxidants activate small G-proteins, calcium signaling, P13K, PKCs, and MAPKs. Oxidants cause cardiomyocytes to enlarge in vitro. Recent developments in transgenic, genomic, and proteomic technologies will provide needed tools to reveal the mechanism of chronic cardiac toxicity at the cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Colucci, W. S. and Braunwald, E. (1997). Pathophysiology of heart failure, in Heart Disease: A Textbook of Cardiovascular Medicine, 5th ed. (E. Braunwald, ed), Vol 1, pp. 394–420. W.B. Saunders, Philadelphia.

    Google Scholar 

  2. Hunter, J.J. and Chien, K.R. (1999). Signaling pathways for cardiac hypertrophy and failure N. Engl. J. Med. 341:1276–1283.

    PubMed  CAS  Google Scholar 

  3. Bromme, H.J. and Holtz, J. (1996). Apoptosis in the heart: when and why? Mol. Cell. Biochem. 163–164:261–275.

    PubMed  Google Scholar 

  4. Elsasser, A., Suzuki, K., and Schaper, J. (2000) Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. J. Mol. Cell. Cardiol. 32:711–724.

    PubMed  CAS  Google Scholar 

  5. Kang, P.M. and Izumo, S. (2000). Apoptosis and heart failure: a critical review of the literature. Circ. Res. 86:1107–1113.

    PubMed  CAS  Google Scholar 

  6. Chen, Q. and Tu, V. (2001). Apoptosis and heart failure: mechanisms and therapeutic implications. Am. J. Cardiovasc. Drugs, in press.

  7. Lakatta, E.D. (1998). Circulatory function in younger and older humans in health, in Principles of Geriatric Medicine and Gerontology, 4th ed. (M.R. Hazzard, J.P., Blass, W.H. Ettinger, J.B. Halter, and J.G. Ouslander, eds), pp. 645–660, McGraw-Hill, New York.

    Google Scholar 

  8. Lakatta, E.G., Gerstenblith, G., and Weisfeldt, M.L. (1997). The aging heart: structure, function, and disease, in Heart Disease: A Textbook of Cardiovascular Medicine, 5th ed. (E. Braunwald, ed), Vol 2, pp. 1687–1703, W.B. Saunders, Phildelphia.

    Google Scholar 

  9. Fraticelli, A., Josephson, R., Danziger, R., Lakatta, E., and Spurgeon, H. (1989). Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am. J. Physiol. 257:H259-H265.

    PubMed  CAS  Google Scholar 

  10. Olivetti, G., Melissari, M., Capasso, J.M., and Anversa, P. (1991). Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68:1560–1568.

    PubMed  CAS  Google Scholar 

  11. Seidman, C. and Seidman, J. (1995). Gene mutations that cause familiar hypertrophic cardiomyopathy, in Molecular Cardiovascular Medicine (E. Haber, ed), pp. 193–209, Scientific American, New York.

    Google Scholar 

  12. Watkins, H., Seidman, J.G., and Seidman, C.E. (1995) Familial hypertrophic cardiomyopathy: a genetic model of cardiac hypertrophy. Hum. Mol. Genet. 4:1721–1727.

    PubMed  CAS  Google Scholar 

  13. Rapacciuolo, A., Esposito, G., Caron, K., Mao, L., Thomas, S., and Rockman, H. (2001). Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38:876–882.

    PubMed  CAS  Google Scholar 

  14. Schomig, A. (1990). Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 82:I113-I122.

    Google Scholar 

  15. Scheuer, J. (1999). Catecholamines in cardiac hypertrophy. Am. J. Cardiol. 83:70H-74H.

    PubMed  CAS  Google Scholar 

  16. Haq, S., Choukroun, G., Lim, H., et al. (2001). Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677.

    PubMed  CAS  Google Scholar 

  17. De Mello, W.C. and Danser, A.H. (2000). Angiotensin II and the heart: on the intracrine renin-angiotensin system. Hypertension 35:1183–1188.

    PubMed  Google Scholar 

  18. Ichihara, S., Senbonmatsu, T., Price, E. jr., Ichiki, T., Gaffney, F.A., and Inagami, T. (2001). Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351.

    PubMed  CAS  Google Scholar 

  19. Ito, H. (1997). Endothelins and cardiac hypertrophy. Life Sci. 61:585–593.

    PubMed  CAS  Google Scholar 

  20. Molkentin, J.D. and Dorn, I.G. II (2001). Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Ann. Rev. Physiol. 63:391–426.

    CAS  Google Scholar 

  21. Homcy, C.J. (1998): Signaling hypertrophy: how many switches, how many wires [editorial; comment]. Circulation 97:1890–1892.

    PubMed  CAS  Google Scholar 

  22. Molkentin, J.D., Lu, J.R., Antos, C.L., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228.

    PubMed  CAS  Google Scholar 

  23. Sussman, M.A., Lim, H.W., Gude, N., et al. (1998). Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693.

    PubMed  CAS  Google Scholar 

  24. Molkentin, J.D. (2000). Calcineurin and beyond: cardiac hypertrophic signaling. Circ. Res. 87:731–738 (online).

    PubMed  CAS  Google Scholar 

  25. Marban, E. and Koretsune, Y. (1990). Cell calcium, oncogenes, and hypertrophy. Hypertension 15:652–658.

    PubMed  CAS  Google Scholar 

  26. Braun, A.P. and Schulman, H. (1995). The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Ann. Rev. Physiol. 57:417–445.

    CAS  Google Scholar 

  27. Zhu, W., Zou, Y., Shiojima, I., et al. (2000). Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J. Biol. Chem. 275:15,239–15,245.

    CAS  Google Scholar 

  28. Sugden, P.H. (1999). Signaling in myocardial hypertrophy: life after calcineurin? [letter; comment]. Circ. Res. 84:633–646.

    PubMed  CAS  Google Scholar 

  29. Force, T., Rosenzweig, A., Choukroun, G., and Hajjar, R. (1999). Calcineurin inhibitors and cardiac hypertrophy. Lancet 353:1290–1292.

    PubMed  CAS  Google Scholar 

  30. Newton, A.C. (1995). Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270:28,495–28,498.

    CAS  Google Scholar 

  31. Mellor, H. and Parker, P.J. (1998). The extended protein kinase C superfamily. Biochem. J. 332:281–292.

    PubMed  CAS  Google Scholar 

  32. Jaken, S. (1996). Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 8:168–173.

    PubMed  CAS  Google Scholar 

  33. Puceat, M. and Vassort, G. (1996). Signalling by protein kinase C isoforms in the heart. Mol. Cell. Biochem. 157:65–72.

    PubMed  CAS  Google Scholar 

  34. Mochly-Rosen, D. and Kauvar, L.M. (1998). Modulating protein kinase C signal transduction. Adv. Pharmacol. 44: 91–145.

    PubMed  CAS  Google Scholar 

  35. Zou, Y., Komuro, I., Yamazaki, T., et al. (1996). Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J. Biol. Chem. 271:33,592–33,597.

    CAS  Google Scholar 

  36. Lamers, J.M., Eskildsen-Helmond, Y.E., Resink, A.M., et al. (1995). Endothelin-1-induced phospholipase C-beta and D and protein kinase C isoenzyme signaling leading to hypertrophy in rat cardiomyocytes. J. Cardiovasc. Pharmacol. 26:S100-S103.

    PubMed  CAS  Google Scholar 

  37. Karns, L.R., Kariya, K., and Simpson, P.C. (1995). M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J. Biol. Chem. 270:410–417.

    PubMed  CAS  Google Scholar 

  38. Muth, J.N., Bodi, I., Lewis, W., Varadi, G., and Schwartz, A. (2001). A Ca(2+)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation 103:140–147.

    PubMed  CAS  Google Scholar 

  39. Wakasaki, H., Koya, D., Schoen, F.J., Jirousek, M.R., Ways, D.K., Hoit, B.D., et al. (1997). Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc. Natl. Acad. Sci. USA 94:9320–9325.

    PubMed  CAS  Google Scholar 

  40. Bowman, J.C., Steinberg, S.F., Jiang, T., Geenen, D.L., Fishman, G.I., and Buttrick, P.M. (1997). Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J. Clin. Invest. 100:2189–2195.

    PubMed  CAS  Google Scholar 

  41. Roman, B.B., Geenen, D.L., Leitges, M., and Buttrick, P.M. (2001). PKC-beta is not necessary for cardiac hypertrophy. Am. J. Physiol. (Heart Circ. Physiol.) 280:H2264-H2270.

    CAS  Google Scholar 

  42. Takeishi, Y., Ping, P., Bolli, R., Kirkpatrick, D.L., Hoit, B.D., and Walsh, R.A. (2000). Transgenic overexpression of constitutively active protein kinase C essilon causes concentric cardiac hypertrophy. Circ. Res. 86:1218–1223.

    PubMed  CAS  Google Scholar 

  43. Mochly-Rosen, D., Wu, G., Hahn, H., et al. (2000). Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ. Res. 86:1173–1179.

    PubMed  CAS  Google Scholar 

  44. Force, T., Hajjar, R., Del Monte, F., Rosenzweig, A., and Choukroun, G. (1999). Signaling pathways mediating the response to hypertrophic stress in the heart. Gene Exp. 7:337–348.

    CAS  Google Scholar 

  45. Sugden, P.H. and Clerk, A. (1998). “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 83:345–352.

    PubMed  CAS  Google Scholar 

  46. Gillespie-Brown, J., Fuller, S.J., Bogoyevitch, M.A., Cowley, S., and Sugden, P.H. (1995). The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J. Biol. Chem. 270: 28,092–28,096.

    CAS  Google Scholar 

  47. Clerk, A., Michael, A., and Sugden, P.H. (1998). Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J. Cell Biol. 142:523–535.

    PubMed  CAS  Google Scholar 

  48. Babu, G.J., Lalli, M.J., Sussman, M.A., Sadoshima, J., and Periasamy, M. (2000). Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J. Mol. Cell. Cardiol. 32:1447–1457.

    PubMed  CAS  Google Scholar 

  49. Copper, G. (1997). Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Ann Rev. Med. 48:13–23.

    Google Scholar 

  50. Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79:143–180.

    PubMed  CAS  Google Scholar 

  51. Wang, Y., Huang, S., Sah, V.P., et al. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273:2161–2168.

    PubMed  CAS  Google Scholar 

  52. Zechner, D., Thuerauf, D.J., Hanford, D.S., McDonough, P.M., and Glembotski, C.C. (1997). A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J. Cell Biol. 139:115–127.

    PubMed  CAS  Google Scholar 

  53. Choukroun, G., Hajjar, R., Kyriakis, J.M., Bonventre, J.V., Rosenzweig, A., and Force, T. (1998). Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J. Clin. Invest. 102:1311–1320.

    PubMed  CAS  Google Scholar 

  54. Wang, Y., Su, B., Sah, V.P., Brown, J.H., Han, J., and Chien, K.R. (1998). Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J. Biol. Chem. 273:5423–5426.

    PubMed  CAS  Google Scholar 

  55. Choukroun, G., Hajjar, R., Fry, S., et al. (1999). Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J. Clin. Invest. 104:391–398.

    PubMed  CAS  Google Scholar 

  56. Rameh, L.E. and Cantley, L.C. (1999). The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274:8347–8350.

    PubMed  CAS  Google Scholar 

  57. Dufner, A. and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253:100–109.

    PubMed  CAS  Google Scholar 

  58. Pullen, N. and Thomas, G. (1997). The modular phosphorylation and activation of p70s6k. FEBS Lett. 410:78–82.

    PubMed  CAS  Google Scholar 

  59. Shioi, T., Kang, P.M., Douglas, P.S., et al. (2000). The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 19:2537–2548.

    PubMed  CAS  Google Scholar 

  60. Saad, M.J., Velloso, L.A., and Carvalho, C.R. (1995). Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem. J. 310:741–744.

    PubMed  CAS  Google Scholar 

  61. Rabkin, S.W., Goutsouliak, V., and Kong, J.Y. (1997). Angiotensin II induces activation of phosphatidylinositol 3-kinase in cardiomyocytes. J. Hypertens. 15:891–899.

    PubMed  CAS  Google Scholar 

  62. Foschi, M., Chari, S., Dunn, M.J., and Sorokin, A. (1997). Biphasic activation of p21ras by endothelin-1 sequentially activates the ERK cascade and phosphatidylinositol 3-kinase. EMBO J. 16:6439–6451.

    PubMed  CAS  Google Scholar 

  63. Su, X., Wang, P., Ibitayo, A., and Bitar, K.N. (1999). Differential activation of phosphoinositide 3-kinase by endothelin and ceramide in colonic smooth muscle cells. Am. J. Physiol. 276:G853-G861.

    PubMed  CAS  Google Scholar 

  64. Hu, Z.W., Shi, X.Y., Lin, R.Z., and Hoffman, B.B. (1996). Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J. Biol. Chem. 271:8977–8982.

    PubMed  CAS  Google Scholar 

  65. Schluter, K.D., Goldberg, Y., Taimor, G., Schafer, M., and Piper, H.M. (1998). Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovasc. Res. 40:174–181.

    PubMed  CAS  Google Scholar 

  66. Sadoshima, J. and Izumo, S. (1995). Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ. Res. 77:1040–1052.

    PubMed  CAS  Google Scholar 

  67. Boluyt, M.O., Zheng, J.S., Younes, A., et al. (1997). Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ. Res. 81:176–186.

    PubMed  CAS  Google Scholar 

  68. Simm, A., Schluter, K., Diez, C., Piper, H.M., and Hoppe, J. (1998). Activation of p70(S6) kinase by beta-adrenoceptor agonists on adult cardiomyocytes. J. Mol. Cell. Cardiol. 30:2059–2067.

    PubMed  CAS  Google Scholar 

  69. Laser, M., Kasi, V.S., Hamawaki, M., Cooper, G., Kerr, C.M., and Kuppuswamy, D. (1998). Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal. J. Biol. Chem. 273:24,610–24,619.

    CAS  Google Scholar 

  70. Yamazaki, T., Komuro, I., Kudoh, S., et al. (1995). Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J. Clin. Invest. 96:438–446.

    PubMed  CAS  Google Scholar 

  71. Huang, L., Wolska, B.M., Montgomery, D.E., Burkart, E.M., Buttrick, P.M., and Solaro, R.J. (2001). Increased contractility and altered Ca(2+) transients of mouse heart myocytes conditionally expressing PKCbeta. Am. J. Physiol. —Cell Physiol. 280:C1114-C1120.

    PubMed  CAS  Google Scholar 

  72. De Windt, L.J., Lim, H.W., Haq, S., Force, T., and Molkentin, J.D. (2000). Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J. Biol. Chem. 275:13,571–13,579.

    Google Scholar 

  73. Murat, A., Pellieux, C., Brunner, H.R., and Pedrazzini, T. (2000). Calcineurin blockade prevents cardiac mitogen-activated protein kinase activation and hypertrophy in renovascular hypertension. J. Biol. Chem. 275:40,867–40,873.

    CAS  Google Scholar 

  74. Zak, R. (1995). Molecular mechanism of cardiac hypertrophy, in Molecular Cardiovascular Medicine (E. Haber, ed), pp. 177–192. Scientific American, New York.

    Google Scholar 

  75. Zhu, H. (1997). Myocardial cellular development and morphogenesis, in The Myocardium, 2nd ed. (G.A. Langer, ed), Vol 1, pp. 33–80, Academic, San Diego, CA.

    Google Scholar 

  76. Saito, Y., Nakao, K., Arai, H., et al. (1989). Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J. Clin. Invest. 83:298–305.

    PubMed  CAS  Google Scholar 

  77. Cody, R.J., Atlas, S.A., Laragh, J.H., et al. (1986). Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J. Clin. Invest. 78:1362–1374.

    PubMed  CAS  Google Scholar 

  78. Francis, G.S., Benedict, C., Johnstone, D.E., et al. (1990). Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82:1724–1729.

    PubMed  CAS  Google Scholar 

  79. Dickstein, K., Larsen, A.I., Bonarjee, V., Thoresen, M., Aarsland, T., and Hall, C. (1995). Plasma proatrial natriuretic factor is predictive of clinical status in patients with congestive heart failure. Am. J. Cardiol. 76:679–683.

    PubMed  CAS  Google Scholar 

  80. Tsutamoto, T., Wada, A., Maeda, K., et al. (1997). Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 96:509–516.

    PubMed  CAS  Google Scholar 

  81. Ramirez, M.T., Zhao, X.L., Schulman, H., and Brown, J.H. (1997). The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J. Biol. Chem. 272:31,203–31,208.

    CAS  Google Scholar 

  82. Shubeita, H.E., Martinson, E.A., Van Bilsen, M., Chien, K.R., and Brown, J.H. (1992). Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 89:1305–1309.

    PubMed  CAS  Google Scholar 

  83. Thorburn, J., Xu, S., and Thorburn, A. (1997). MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 16:1888–1900.

    PubMed  CAS  Google Scholar 

  84. Nemoto, S., Sheng, Z., and Lin, A. (1998). Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol. Cell. Biol. 18:3518–3526.

    PubMed  CAS  Google Scholar 

  85. Fuller, S.J., Finn, S.G., Downward, J., and Sugden, P.H. (1998). Stimulation of gene expression in neonatal rat ventricular myocytes by Ras is mediated by Ral guanine nucleotide dissociation stimulator (Ral.GDS) and phosphatidylinositol 3-kinase in addition to Raf. Biochem. J. 335:241–246.

    PubMed  CAS  Google Scholar 

  86. Rosenzweig, A. and Seidman, C.E. (1991). Atrial natriuretic factor and related peptide hormones. Annu. Rev. Biochem. 60:229–255.

    PubMed  CAS  Google Scholar 

  87. Magga, J., Vuolteenaho, O., Tokola, H., Marttila, M., and Ruskoaho, H. (1998). B-Type natriuretic peptide: a myocyte-specific marker for characterizing load-induced alterations in cardiac gene expression. Ann. Med. 30:39–45.

    PubMed  CAS  Google Scholar 

  88. Nakao, K., Minobe, W., Roden, R., Bristow, M.R., and Leinwand, L.A. (1997). Myosin heavy chain gene expression in human heart failure. J. Clin. Invest. 100:2362–2370.

    PubMed  CAS  Google Scholar 

  89. Lowes, B.D., Minobe, W., Abraham, W.T., et al. (1997). Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100:2315–2324.

    PubMed  CAS  Google Scholar 

  90. Swynghedauw, B., Besse, S., Assayag, P., et al. (1995). Molecular and cellular biology of the senescent hypertrophied and failing heart. Am. J. Cardiol. 76:2D-7D.

    PubMed  CAS  Google Scholar 

  91. Morkin, E. (1993). Regulation of myosin heavy chain genes in the heart. Circulation 87:1451–1460.

    PubMed  CAS  Google Scholar 

  92. Morkin, E. (2000). Control of cardiac myosin heavy chain gene expression. Microsc. Res. Tech. 50:522–531.

    PubMed  CAS  Google Scholar 

  93. Swynghedauw, B. (1986). Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol. Rev. 66:710–771.

    PubMed  CAS  Google Scholar 

  94. Bishopric, N.H., Jayasena, V., and Webster, K.A. (1992). Positive regulation of the skeletal alpha-actin gene by Fos and Jun in cardiac myocytes. J. Biol. Chem. 267:25,535–25,540.

    CAS  Google Scholar 

  95. Arai, M., Matsui, H., and Periasamy, M. (1994). Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ. Res. 74:555–564.

    PubMed  CAS  Google Scholar 

  96. Bouvard, D., Brakebusch, C., Gustafsson, E., et al. (2001). Functional consequences of integrin gene mutations in mice. Circ. Res. 89:211–223.

    PubMed  CAS  Google Scholar 

  97. Pham, C.G., Harpf, A.E., Keller, R.S., et al. (2000). Striated muscle-specific beta(1D)-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am. J. Physiol. (Heart Circ. Physiol.) 279:H2916-H2926.

    CAS  Google Scholar 

  98. Baudoin, C., Goumans, M.J., Mummery, C., and Sonnenberg, A. (1998). Knockout and knockin of the beta1 exon D define distinct roles for integrin splice variants in heart function and embryonic development. Genes Dev. 12: 1202–1216.

    PubMed  CAS  Google Scholar 

  99. Ross, R.S., Pham, C., Shai, S.Y., et al. (1998). Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ. Res. 82:1160–1172.

    PubMed  CAS  Google Scholar 

  100. Kuppuswamy, D., Kerr, C., Narishige, T., Kasi, V.S., Menick, D.R., and Cooper, G. (1997). Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J. Biol. Chem. 272:4500–4508.

    PubMed  CAS  Google Scholar 

  101. Plopper, G.E., McNamee, H.P., Dike, L.E., Bojanowski, K., and Ingber, D.E. (1995). Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell. 6:1349–1365.

    PubMed  CAS  Google Scholar 

  102. Miyamoto, S., Teramoto, H., Gutkind, J.S., and Yamada, K.M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135:1633–1642.

    PubMed  CAS  Google Scholar 

  103. Ingber, D. (1991). Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848.

    PubMed  CAS  Google Scholar 

  104. Wang, N., Butler, J.P., and Ingber, D.E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.

    PubMed  CAS  Google Scholar 

  105. Bloom, S., Lockard, V.G., and Bloom, M. (1996). Intermediate filament-mediated stretch-induced changes in chromatin: a hypothesis for growth initiation in cardiac myocytes. J. Mol. Cell. Cardiol. 28:2123–2127.

    PubMed  CAS  Google Scholar 

  106. Critchley, D.R., Holt, M.R., Barry, S.T., Priddle, H., Hemmings, L., and Norman, J. (1999). Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem. Soc. Symp. 65:79–99.

    PubMed  CAS  Google Scholar 

  107. Yamada, K.M. and Miyamoto, S. (1995). Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol. 7:681–689.

    PubMed  CAS  Google Scholar 

  108. Sastry, S.K. and Horwitz, A.F. (1993). Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol. 5:819–831.

    PubMed  CAS  Google Scholar 

  109. Tagawa, H., Koide, M., Sato, H., Zile, M.R., Carabello, B.A., and Cooper, G. (1998). Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ. Res. 82:751–761.

    PubMed  CAS  Google Scholar 

  110. Sato, H., Nagai, T., Kuppuswamy, D., et al. (1997). Microtubule stabilization in pressure overload cardiac hypertrophy. J. Cell Biol. 139:963–973.

    PubMed  CAS  Google Scholar 

  111. Tagawa, H., Wang, N., Narishige, T., Ingber, D.E., Zile, M.R., and Cooper, G. (1997). Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ. Res. 80: 281–289.

    PubMed  CAS  Google Scholar 

  112. Tagawa, H., Rozich, J.D., Tsutsui, H., et al. (1996). Basis for increased microtubules in pressure-hypertrophied cardiocytes. Circulation 93:1230–1243.

    PubMed  CAS  Google Scholar 

  113. Eble, D.M. and Spinale, F.G. (1995). Contractile and cytoskeletal content, structure, and mRNA levels with tachycardia-induced cardiomyopathy. Am. J. Physiol. 268: H2426-H2439.

    PubMed  CAS  Google Scholar 

  114. Hein, S., Kostin, S., Heling, A., Maeno, Y., and Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiovasc. Res. 45:273–278.

    PubMed  CAS  Google Scholar 

  115. Sehl, P.D., Tai, J.T., Hillan, K.J., et al. (2000). Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 101:1990–1999.

    PubMed  CAS  Google Scholar 

  116. Schoenfeld, J.R., Vasser, M., Jhurani, P., et al. (1998). Distinct molecular phenotypes in murine cardiac muscle development, growth, and hypertrophy. J. Mol. Cell. Cardiol. 30:2269–2280.

    PubMed  CAS  Google Scholar 

  117. Friddle, C.J., Koga, T., Rubin, E.M., and Bristow, J. (2000). Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 97:6745–6750.

    PubMed  CAS  Google Scholar 

  118. Hwang, D.M., Dempsey, A.A., Lee, C.Y., and Liew, C.C. (2000). Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66:1–14.

    PubMed  CAS  Google Scholar 

  119. Johnatty, S.E., Dyck, J.R., Michael, L.H., Olson, E.N., and Abdellatif, M. (2000). Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 32:805–815.

    PubMed  CAS  Google Scholar 

  120. Arnott, D., O'Connell, K.L., King, K.L., and Stults J.T. (1998). An integrated approach to proteome analysis: identification of proteins associated with cardiac hypertrophy. Anal. Biochem. 258:1–18.

    PubMed  CAS  Google Scholar 

  121. Hopkins, H.A., Betsill, W.L. Jr., Hobson, A.S., and Looney, W.B. (1982). Cyclophosphamide-induced cardiomyopathy in the rat. Cancer Treat. Rep. 66:1521–1527.

    PubMed  CAS  Google Scholar 

  122. Brady, H.R. and Horgan, J.H. (1988). Lithium and the heart. Unanswered questions Chest 93:166–169.

    PubMed  CAS  Google Scholar 

  123. Kopp, S.J., Barron, J.T., and Tow, J.P. (1988). Cardiovascular actions of lead and relationship to hypertension: a review. Environ. Health Perspect. 78:91–99.

    PubMed  CAS  Google Scholar 

  124. Hall, J.C. and Harruff, R. (1989). Fatal cardiac arrhythmia in a patient with interstitial myocarditis related to chronic arsenic poisoning. South. Med. J. 82:1557–1560.

    PubMed  CAS  Google Scholar 

  125. Ohanian, E.V., Iwai, J., Leitl, G., and Tuthill, R. (1978). Genetic influence on cadmium-induced hypertension. Am. J. Physiol. 235:H385-H391.

    PubMed  CAS  Google Scholar 

  126. Tomera, J.F., Lilford, K., Kukulka, S.P., Friend, K.D., and Harakal, C. (1994) Divalent cations in hypertension with implications to heart disease: calcium, cadmium interactions. Methods Findings Exp. Clin. Pharmacol. 16:97–107.

    CAS  Google Scholar 

  127. Jankala, H., Eklund, K.K., Kokkonen, J.O., et al. (2001). Ethanol infusion increases ANP and p21 gene expression in isolated perfused rat heart. Biochem. Biophys. Res. Commun. 281:328–333.

    PubMed  CAS  Google Scholar 

  128. Meehan, J., Piano, M., Solaro, R.J., and Kennedy, J.M. (1999). Heavy long-term ethanol consumption induces an alpha- to beta-myosin heavy chain isoform transition in rat. Basic Res. Cardiol. 94:481–488.

    PubMed  CAS  Google Scholar 

  129. Manolio, T.A., Levy, D., Garrison, R.J., Castelli, W.P., and Kannel, W.B. (1991). Relation of alcohol intake to left ventricular mass: The Framingham Study. J. Am. Coll. Cardiol. 17:717–721.

    PubMed  CAS  Google Scholar 

  130. King, D.C. and Hirst, M. (1990). Suppression of ethanol-induced cardiac hypertrophy by beta-adrenoceptor blockade. J. Mol. Cell. Cardiol. 22:523–531.

    PubMed  CAS  Google Scholar 

  131. Adams, M.A. and Hirst, M. (1986). Ethanol-induced cardiac hypertrophy: correlation between development and the excretion of adrenal catecholamines. Pharmacol. Biochem. Behav. 24:33–38.

    PubMed  CAS  Google Scholar 

  132. Kunisada, K., Negoro, S., Tone, E., et al. (2000). Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc. Natl. Acad. Sci. USA 97:315–319.

    PubMed  CAS  Google Scholar 

  133. Sun, X., Zhou, Z., and Kang, Y.J. (2001). Attenuation of doxorubicin chronic toxicity in metallothionein-over-expressing transgenic mouse heart. Cancer Res. 61:3382–3387.

    PubMed  CAS  Google Scholar 

  134. Doroshow, J.H. and Davies, K.J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem. 261:3068–3074.

    PubMed  CAS  Google Scholar 

  135. Davies, K.J. and Doroshow, J.H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem. 261:3060–3067.

    PubMed  CAS  Google Scholar 

  136. Keizer, H.G., Pinedo, H.M., Schuurhuis, G.J., and Joenje, H. (1990). Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol. Therap. 47:219–231.

    CAS  Google Scholar 

  137. Weiss, R.B. (1992). The anthracyclines: will we ever find a better doxorubicin? Semin. Oncol. 19:670–686.

    PubMed  CAS  Google Scholar 

  138. Kang, Y.J., Li, G., and Saari, J.T. (1999). Metallothionein inhibits ischemia-reperfusion injury in mouse heart. Am. J. Physiol. 276:H993-H997.

    PubMed  CAS  Google Scholar 

  139. Kang, Y.J. (1999). The antioxidant function of metallothionein in the heart. Exp. Biol. Med. 222:263–273.

    CAS  Google Scholar 

  140. Griendling, K.K. and Alexander, R.W. (1997). Oxidative stress and cardiovascular disease [editorial; comment]. Circulation 96:3264–3265.

    PubMed  CAS  Google Scholar 

  141. Griendling, K.K. and Ushio-Fukai, M. (2000). Reactive oxygen species as mediators of angiotensin II signaling. Regul. Peptides 91:21–27.

    CAS  Google Scholar 

  142. Feuerstein, G., Yue, T.L., Ma, X., and Ruffolo, R.R. (1998). Novel mechanisms in the treatment of heart failure: inhibition of oxygen radicals and apoptosis by carvedilol. Prog. Cardiovasc. Dis. 41:17–24.

    PubMed  CAS  Google Scholar 

  143. Tappia, P.S., Hata, T., Hozaima, L., Sandhu, M.S., Panagia, V., and Dhalla, N.S. (2001). Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch. Biochem. Biophys. 387:85–92.

    PubMed  CAS  Google Scholar 

  144. Miller, J.W., Selhub, J., and Joseph, J.A. (1996). Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radical Biol. Med. 21:241–249.

    CAS  Google Scholar 

  145. Irani, K., Xia, Y., Zweier, J.L., et al. (1997). Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652.

    PubMed  CAS  Google Scholar 

  146. Woo, C.H., Lee, Z.W., Kim, B.C., Ha, K.S., and Kim, J.H. (2000). Involvement of cytosolic phospholipase A2, and the subsequent release of arachidonic acid, in signalling by rac for the generation of intracellular reactive oxygen species in rat-2 fibroblasts. Biochem. J. 348:525–530.

    PubMed  CAS  Google Scholar 

  147. Shih, N.L., Cheng, T.H., Loh, S.H., et al. (2001). Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun. 283:143–148.

    PubMed  CAS  Google Scholar 

  148. Mukhin, Y.V., Garnovskaya, M.N., Collinsworth, G. et al. (2000). 5-Hydroxytryptamine1A receptor/Gibeta-gamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem. J. 347:61–67.

    PubMed  CAS  Google Scholar 

  149. Chen, Q., Tu, V., Wu, Y., and Bahl, J. (2000). Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Arch. Biochem. Biophys. 373: 242–248.

    PubMed  CAS  Google Scholar 

  150. Tu, V., Bahl, J., and Chen, Q. (2001). Signals of oxidant-induced hypertrophy of cardiac myocytes: key activation of phosphatidylinositol 3-kinase and p70S6 kinase. J. Pharm. Exp. Therap. in press.

  151. Aikawa, R., Komuro, I., Yamazaki, T., et al. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 100:1813–1821.

    PubMed  CAS  Google Scholar 

  152. Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., and Kurose, H. (2000). G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495.

    PubMed  CAS  Google Scholar 

  153. Wung, B.S., Cheng, J.J., Chao, Y.J., Hsieh, H.J., and Wang, D.L. (1999). Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ. Res. 84:804–812.

    PubMed  CAS  Google Scholar 

  154. Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M.P., et al. (1999). Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1 beta requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19:1950–1960.

    PubMed  CAS  Google Scholar 

  155. Muller, J.M., Cahill, M.A., Rupec, R.A., Baeuerle, P.A., and Nordheim, A. (1997). Antioxidants as well as oxidants activate c-fos via Ras-dependent activation of extracellular-signal-regulated kinase 2 and Elk-1. Eur. J. Biochem. 244:45–52.

    PubMed  CAS  Google Scholar 

  156. Josephson, R.A., Silverman, H.S., Lakatta, E.G., Stern, M.D., and Zweier, J.L. (1991). Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J. Biol. Chem. 266:2354–2361.

    PubMed  CAS  Google Scholar 

  157. Hendricks-Munoz, K.D., Gerrets, R.P., Higgins, R.D., Munoz, J.L., and Caines, V.V. (1996). Cocaine-stimulated endothelin-1 release is decreased by angiotensin-converting enzyme inhibitors in cultured endothelial cells. Cardiovasc. Res. 31:117–123.

    PubMed  CAS  Google Scholar 

  158. Adachi, J. and Mizoi, Y. (1983). Acetaldehyde-mediated alcohol sensitivity and elevation of plasma catecholamine in man. Jpn. J. Pharmacol. 33:531–539.

    PubMed  CAS  Google Scholar 

  159. Schneider, F.H. (1974). Effects of length of exposure to and concentration of acetaldehyde on the release of catecholamines. Biochem. Pharmacol. 23:223–229.

    PubMed  CAS  Google Scholar 

  160. Schneider, F.H. (1971). Acetaldehyde-induced catecholamine secretion from the cow adrenal medulla. J. Pharmacol. Exp. Therap. 177:109–118.

    CAS  Google Scholar 

  161. Hay, J., Shahzeidi, S., and Laurent, G. (1991). Mechanisms of bleomycin-induced lung damage. Arch. Toxicol. 65:81–94.

    PubMed  CAS  Google Scholar 

  162. Lazo, J.S., Hoyt, D.G., Sebti, S.M., and Pitt, B.R. (1990). Bleomycin: a pharmacologic tool in the study of the pathogenesis of interstitial pulmonary fibrosis. Pharmacol. Therap. 47:347–358.

    CAS  Google Scholar 

  163. Williams, J.H. Jr., Bodell, P., Hosseini, S., Tran, H., and Baldwin, K.M. (1992). Haemodynamic sequelae of pulmonary fibrosis following intratracheal bleomycin in rats. Cardiovasc. Res. 26:401–408.

    PubMed  CAS  Google Scholar 

  164. Huxtable, R. (1989). Human health implications of pyrrolizidine alkaloids and herbs containing them, in Toxicants of Plant Origin (P. Cheeke, ed), Vol 1, pp. 41–86, CRC, Boca Raton, FL.

    Google Scholar 

  165. Doggrell, S.A. and Brown, L. (1998). Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc. Res. 39:89–105.

    PubMed  CAS  Google Scholar 

  166. Minamino, T., Kitakaze, M., Papst, P.J. et al. (2000). Inhibition of nitric oxide synthesis induces coronary vascular remodeling and cardiac hypertrophy associated with the activation of p70 S6 kinase in rats. Cardiovasc. Drugs Ther. 14:533–542.

    PubMed  CAS  Google Scholar 

  167. Nakamura, T., Kurashina, T., Saito, Y., et al. (1998). ET(A) receptor antagonist ameliorates nephrosclerosis and left ventricular hypertrophy induced in rat by prolonged inhibition of nitric oxide synthesis. Hypertens. Res. 21:251–257.

    PubMed  CAS  Google Scholar 

  168. Sutton, M.G. and Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988.

    PubMed  CAS  Google Scholar 

  169. Ramos, K.S. (1999). Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells: implications in chemical atherogenesis. Annu. Rev. Pharmacol. Toxicol. 39:243–265.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin M. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q.M., Tu, V.C., Purdom, S. et al. Molecular mechanisms of cardiac hypertrophy induced by toxicants. Cardiovasc Toxicol 1, 267–283 (2001). https://doi.org/10.1385/CT:1:4:267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:1:4:267

Key Words

Navigation