Skip to main content
Log in

Decreased sensitivity of neonatal rabbit sarcoplasmic reticulum to anthracycline cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Anthracyclines are useful chemotherapeutic agents whose utility is limited by the development of irreversible cardiotoxicity. When tested, the pediatric population demonstrates an increased sensitivity to the cardiotoxicity of this class of agents, although the reasons for this increased sensitivity are unclear. The sarcoplasmic reticulum (SR) is a target for anthracycline cardiotoxicity in adults, but the effects of anthracycline on the SR in developing myocardium have not been examined. It may be possible to gain insight into the mechanisms of cardiotoxicity through a comparative approach. We compared the acute effects of doxorubicin, daunorubicin, and caffeine on contractile function in adult and neonatal rabbit myocardium. Frequency-dependent contratility, 90% relaxation times, and postrest potentiated contractions (a uniquely SR-dependent phenomenon) in adult myocardium were inhibited in a concentration-dependent manner. Neonatal myocardium, however, was resistant to the effects of these agents. The degree of contractile dysfunction wa consistent with the difference in SR maturation between adult and developing myocardium Anthracyclines exhibited effects similar to those of caffeine, an agent known to render the Sr nonfunctional by the depletion of the releasable SR calcium pool. These results suggest that anthracyclines induce acute cardiac lesions through effects on the SR in adults, whereas cardiotoxic effects in the developing myocardium may proceed by a different mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Young, R.C., Ozols, R.F., and Myers, C.E. (1981). The anthracycline antineoplastic drugs. N. Engl. J. Med. 305:139–153.

    Article  PubMed  CAS  Google Scholar 

  2. Cortes, E.P., Lutman, G., Wanka, J., Wang, J.J., Pickren, J., Wallace, J., et al. (1975). Adriamycin: (NSC-123127) cardiotoxicity; a clinico-pathologic correlation. Cancer Chemother. Rep. 6:215–255.

    Google Scholar 

  3. Alexander, J., Dainiak, N., Berge, H.J., et al. (1979). Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiography. N. Engl. J. Med. 300: 278–283.

    Article  PubMed  CAS  Google Scholar 

  4. Lipshultz, S.E., Colan, S.D., Gelber, R.D., Perez-Atayde, A.R., Sallan, S.E., and Sanders, S.P. (1991). Late effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 324:808–815.

    Article  PubMed  CAS  Google Scholar 

  5. Grenier, M.A. and Lipshultz, S.E. (1998). Epidemiology of anthracycline cardiotoxicity in children and adults. Semin. Oncol. 25(4 Suppl. 10):72–85.

    PubMed  CAS  Google Scholar 

  6. Maylie, J.G. (1982). Excitation-contraction coupling in neonatal and adult myocardium of cat. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H834-H843.

    PubMed  CAS  Google Scholar 

  7. Nakanishi, T. and Jarmakani, J.M. (1984). Developmental changes in myocardial mechanical function and subcellular organelles. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H651-H625.

    Google Scholar 

  8. Fabiato, A. and Fabiato, F. (1978). Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and newborn rat ventricles. Ann. NY Acad. Sci. 307:491–521.

    Article  PubMed  CAS  Google Scholar 

  9. Wibo, M., Bravo, G., and Godfraind, T. (1990). Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ. Res. 68:662–673.

    Google Scholar 

  10. Harrer, J.M., Haghighi, K., Kim, H.W., Ferguson, D.G., and Kranias, E.G. (1997). Coordinate regulation of SR Ca-ATPase and phospholamban expression in developing muring heart. Am. J. Physiol. 272 (Heart Circ. Physiol. 41): H57-H66.

    PubMed  CAS  Google Scholar 

  11. Fill, M. and Coronado, R. (1988). Ryanodine receptor channel of sarcoplasmic reticulum. Trends. Neurol. Sci. 11: 453–457.

    Article  CAS  Google Scholar 

  12. Page, E., Earley, J., and Power, B. (1974). Normal growth of ultrastructures in rat left ventricular myocardial cells. Circ. Res. 35(Suppl. II):II–12-II–16.

    Google Scholar 

  13. Hirakow, R., Gotoh, T., and Watanabe, T. (1980). Quantitative studies on the ultrastruc tural differentiation and growth of mammalian cardiac muscle cells: I. The atria and ventricles of the rat. Acta. Anat. (Basel) 108:144–152.

    CAS  Google Scholar 

  14. Horenstein, M.S., Vander-Heide, R.S., and L'Ecuyer, T.J. (2000). Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol. Genet. Metab. 71:436–444.

    Article  PubMed  CAS  Google Scholar 

  15. Solem, L.E., Heller, L.J., and Wallace, K.B. (1996). Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by. J. Mol. Cell. Cardiol. 28:1023–1032.

    Article  PubMed  CAS  Google Scholar 

  16. Boucek, R.J., Jr., Olson, R.D., Brenner, D.E., Ogunbunmi, E.M., Inui, M., and Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps: a correlative study of cardiac muscle with isolated membrane fractions. J. Biol. Chem. 262: 15,851–15,856.

    CAS  Google Scholar 

  17. Hagane, K., Akera, T., and Berlin, J.R. (1988). Doxorubicin: mechanism of cardiodepressant actions in guinea pigs. J. Pharmacol. Exp. Ther. 246:655–661.

    PubMed  CAS  Google Scholar 

  18. Boucek, R.J., Jr., Buck, S.H., Scott, F., Oquist, N.L., Fleischer, S., and Olson, R.D. (1993). Anthracy cline-induced tension in permeabilized cardiac fibers: evidence for the activation of the calcium release channel of sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 25:249–259.

    Article  PubMed  CAS  Google Scholar 

  19. Burke, B.E., Gambliel, H., Olson, R.D., Bauaer, F.K., and Cusack, B.J. (2000). Prevention by dexrazoxane of down-regulation of ryanodine receptor gene expression in anthra-cycline cardiomyopathy in the rat. Br. J. Pharmacol. 131: 1–4.

    Article  PubMed  CAS  Google Scholar 

  20. Olson, R.D., Li, X., Palade, P., etal. (2000). Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicol. Appl. Pharmacol. 169:168–176.

    Article  PubMed  CAS  Google Scholar 

  21. Arai, M., Tomaru, K., Takizawa, T., et al. (1998). Sarco-plasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J. Mol. Cell Cardiol. 30:243–254.

    Article  PubMed  CAS  Google Scholar 

  22. Olson, R.D., Mushlin, P.S., Brenner, D.E., et al. (1988). Doxorubicin cardiotoxicity may be due to its metabolite, doxorubicinol. Proc. Natl. Acad. Sci. USA 85:3585–3589.

    Article  PubMed  CAS  Google Scholar 

  23. Pessah, I.N., Durie, E.L., Schiedt, M.J., and Zimany, I. (1990). Anthraquinone-sensitized Ca release channel from rat cardiac sarcoplasmic reticulum: possible receptor-mediated mechanism of doxorubicin cardiomyopathy. Mol. Pharmacol. 37:503–514.

    PubMed  CAS  Google Scholar 

  24. Iarussi, D., Auricchia, U., Agretto, A., et al. (1994). Protective effect of coenzyme Q10 on anthracyclines cardio-toxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol. Aspects Med. 15(Suppl.):207–212.

    Article  Google Scholar 

  25. Kurabayashi, M., Jeyaseelan, R., and Kedes, L. (1993). Antineoplastic agent doxorubicin inhibits mycgenic differentiation of C2 myoblasts. J. Biol. Chem. 263:5524–5529.

    Google Scholar 

  26. Bers, D.M. (1985). Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am. J. Physiol. 248:H366-H381.

    PubMed  CAS  Google Scholar 

  27. Bouchard, R.A. and Bose, D. (1989) Analysis of the interval-force relationship in rat and canine ventricular myocardium. Am. J. Physiol. 257:H2036-H2047.

    PubMed  CAS  Google Scholar 

  28. Kim, D.H., Landry, A.B. III, Lee, Y.S., and Katz, A.M. (1989). Doxorubicin-induced calcium release from cardiac sarcoplasmic reticulum vesicles. J. Mol. Cell Cardiol. 21:433–436.

    Article  PubMed  CAS  Google Scholar 

  29. DuBell, W.H. and Houser, S.R. (1990). Rest decay of calcium transients and contractility in feline ventricular myocytes. Am. J. Physiol. 259:H395-H402.

    PubMed  CAS  Google Scholar 

  30. Gombosova, I., Boknik, P., Kirechhefer, U., et al. (1998). Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases. Am. J. Physiol. 274 (Heart Circ. Physiol. 43):H2123-H2142

    PubMed  CAS  Google Scholar 

  31. Arai, M., Otsu, K., MacLennan, D.H., and Periasamy, M. (1992). Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262 (Cell Physiol. 31):C614-C620.

    PubMed  CAS  Google Scholar 

  32. Klitzner, T.S. and Freidman, W.F. (1989). A diminished role for the sarcoplasmic reticulum in newborn myocardial contraction: effects of ryanodine. Pediatr. Res. 26:98–101.

    Article  PubMed  CAS  Google Scholar 

  33. Bouchard, R.A. and Bose, D. (1989). Analysis of the interval-force relationship in rat and canine ventricular myocardium. Am. J. Physiol. 257:H2036-H2047.

    PubMed  CAS  Google Scholar 

  34. Sutko, J.L., Bers, D.M., and Reeves, J.P. (1986). Postrest inotropy in rabbit ventricle: Na−Ca exchange determines sarcoplasmic reticulum Ca content. Am. J. Physiol. 250: H654-H661.

    PubMed  CAS  Google Scholar 

  35. Frank, K. and Kranias, E.G. (2000). Phospholamban and cardiac contractility: Review. Ann. Med. 32:572–578.

    Article  PubMed  CAS  Google Scholar 

  36. Yard, N. and Ball, H.A. (1993). Effects of cyclopiazonic acid, an inhibitor of SR Ca ATPase, on the force-frequency relation of guinea-pig atria. Br. J. Pharmacol. 110(Suppl.): 53p.

    Google Scholar 

  37. DuBell, W.H. and Houser, S.R. (1990). Rest decay of calcium transients and contractility in feline ventricular myocytes. Am. J. Physiol. 259:H395-H402.

    PubMed  CAS  Google Scholar 

  38. Langer, G.A. (1992). Calelum and the heart: exchange at the tissue, cell and organelle levels. FASEB J. 6:893–902.

    PubMed  CAS  Google Scholar 

  39. Cusack, B.J., Young, S.P., and Olson, R.D. (1995). Daunorubicin and daunorubicinol pharmacokinetics in plasma and tissues of the rat. Cancer Chemother. Pharmacol. 35: 213–218.

    Article  PubMed  CAS  Google Scholar 

  40. Stewart, D.J., Grewaal, D., Green, R.M., et al. (1993). Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res. 13:1945–1952.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Briant E. Burke M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, B.E., Mushlin, P.S., Cusack, B.J. et al. Decreased sensitivity of neonatal rabbit sarcoplasmic reticulum to anthracycline cardiotoxicity. Cardiovasc Toxicol 2, 41–51 (2002). https://doi.org/10.1385/CT:2:1:41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:2:1:41

Key words

Navigation