Skip to main content
Log in

Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Glycoprotein hormones, follicle-stimulating hormones (FSHs), luteinizing hormones (LHs), thyroid-stimulating hormones (TSHs), and chorionic gonadotropin (CG) are key endocrine hormones secreted from the pituitary gonadotrophs and thyrotrophs and the placenta in primates. These hormones, consisting of a common alpha subunit and a specific beta subunit, act through the FSH receptor (FSHR), the LH receptor (LHR), and the TSH receptor (TSHR) that are highly specific for their cognate hormones. These glycoprotein hormones are structurally and functionally conserved in various vertebrates and have been identified in most lineages of actinopterygians (bony fish) and sarcopterygians (tetrapods). Of interest, recent genomic studies showed that vertebrate glycoprotein hormone receptors belong to an ancient subfamily of G protein-coupled receptors (GPCRs) named as leucine-rich repeat-containing GPCRs (LGRs). These findings have prompted the hypothesis that there could be additional glycoprotein hormones in vertebrate genomes. Indeed, searches of vertebrate genomes have led to the identification of two novel glycoprotein hormone subunits, glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5), as well as their homologs in invertebrates. Subsequently, it was demonstrated that GPA2 and GPB5 form a heterodimeric hormone, thyrostimulin/OGH, capable of activating TSHR in vivo and the thyroid axis in transgenic mice. However, the exact role of this novel glycoprotein hormone and its homolog in invertebrates is not clear. To gain a better understanding of the physiological role of the novel glycoprotein hormone subunits and their evolution, it is imperative to carry out systematic studies of these genes in representative model species. In the present report, we summarize our findings based on studies of genomes of model organisms from sea anemones to humans. We found that GPA2 and GPB5 represent the ancient forms of glycoprotein hormone alpha and beta subunits, respectively, and that vertebrate and invertebrate glycoprotein hormone subunit proteins shared common ancestors that evolved during early metazoan evolution. It is important to note that glycoprotein hormone alpha and beta subunit proteins from invertebrates formed a heterodimer with structural functional characteristics similar to that of vertebrate glycoprotein hormones. Taken together, both glycoprotein hormone alpha and beta subunits evolved before the evolution of nematodes, arthropods, and vertebrates. Parallel expansion of the alpha and beta subunits and their receptors through gene duplication and subsequent subfunctionalization and neofunctionalization of the duplicated genes allowed the development of multiple tissue-specific endocrine systems in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hearn, M. T. and Gomme, P. T. (2000). J. Mol. Recognit. 13, 223–278.

    Article  PubMed  CAS  Google Scholar 

  2. Isaacs, N. W. (1995). Curr. Opin. Struct. Biol. 5, 391–395.

    Article  PubMed  CAS  Google Scholar 

  3. Kol, S. and Adashi, E. Y. (1995). Curr. Opin. Obstet. Gynecol. 7, 209–213.

    PubMed  CAS  Google Scholar 

  4. Jameson, J. L. (1996). Mol. Cell. Endocrinol. 125, 143–149.

    Article  PubMed  CAS  Google Scholar 

  5. Achermann, J. C. and Jameson, J. L. (1999). Mol. Endocrinol. 13, 812–818.

    Article  PubMed  CAS  Google Scholar 

  6. Hsueh, A. J., Eisenhauer, K., Chun, S. Y., Hsu, S. Y., and Billig, H. (1996). Recent Prog. Horm. Res. 51, 433–455.

    PubMed  CAS  Google Scholar 

  7. Themmen, A. P. N. and Huhtaniemi, I. T. (2000). Endocr. Rev. 21, 551–583.

    Article  PubMed  CAS  Google Scholar 

  8. Puett, D., Bhowmick, N., Fernandez, L. M., Huang, J., Wu, C., and Narayan, P. (1996). Mol. Cell. Endocrinol. 125, 55–64.

    Article  PubMed  CAS  Google Scholar 

  9. Huhtaniemi, I. (2000). Horm. Res. 53, 9–16.

    Article  PubMed  CAS  Google Scholar 

  10. Hai, M. V., De Roux, N., Ghinea, N., et al. (1999). Ann. Endocrinol. (Paris) 60, 89–92.

    CAS  Google Scholar 

  11. Brown, R. S. (2004). Endocrinology 145, 4058–4061.

    Article  PubMed  CAS  Google Scholar 

  12. Vassart, G., Pardo, L., and Costagliola, S. (2004). Trends Biochem. Sci. 29, 119–126.

    Article  PubMed  CAS  Google Scholar 

  13. Milgrom, E. (2003). Bull. Acad. Natl. Med. 187, 671–680; discussion 680–682.

    PubMed  CAS  Google Scholar 

  14. Rodien, P., Ho, S. C., Vlaeminck, V., Vassart, G., and Costagliola, S. (2003). Ann. Endocrinol. (Paris) 64, 12–16.

    CAS  Google Scholar 

  15. Wonerow, P., Neumann, S., Gudermann, T., and Paschke, R. (2001). J. Mol. Med. 79, 707–721.

    Article  PubMed  CAS  Google Scholar 

  16. Boime, I. and Ben-Menahem, D. (1999). Recent Prog. Horm. Res. 54, 271–288.

    PubMed  CAS  Google Scholar 

  17. Corless, C. L., Matzuk, M. M., Ramabhadran, T. V., Krichevsky, A., and Boime, I. (1987). J. Cell. Biol. 104, 1173–1181.

    Article  PubMed  CAS  Google Scholar 

  18. So, W. K., Kwok, H. F., and Ge, W. (2005). Biol. Reprod. PMID: 15728794.

  19. Kwok, H. F., So, W. K., Wang, Y., and Ge, W. (2005). Biol. Reprod. PMID: 15728795.

  20. Querat, B., Sellouk, A., and Salmon, C. (2000). Biol. Reprod. 63, 222–228.

    Article  PubMed  CAS  Google Scholar 

  21. Laan, M., Richmond, H., He, C., and Campbell, R. K. (2002). Gen. Comp. Endocrinol. 125, 349–364.

    Article  PubMed  CAS  Google Scholar 

  22. Ryan, R. J., Charlesworth, M. C., McCormick, D. J., Milius, R. P., and Keutmann, H. T. (1988). FASEB J. 2, 2661–2669.

    PubMed  CAS  Google Scholar 

  23. Keutmann, H. T. (1992). Mol. Cell Endocrinol. 86, C1-C6.

    Article  PubMed  CAS  Google Scholar 

  24. Segaloff, D. L., Sprengel, R., Nikolics, K., and Ascoli, M. (1990). Recent Prog. Horm. Res. 46, 261–301.

    PubMed  CAS  Google Scholar 

  25. Milgrom, E., de Roux, N., Ghinea, N., et al. (1997). Horm. Res. 48, 33–37.

    Article  PubMed  CAS  Google Scholar 

  26. Lustbader, J. W., Lobel, L., Wu, H., and Elliott, M. M. (1998). Recent Prog. Horm. Res. 53, 395–424.

    PubMed  CAS  Google Scholar 

  27. Zeleznik, A. J. (1998). Proc. Natl. Acad. Sci. USA 95, 11002–11007.

    Article  PubMed  CAS  Google Scholar 

  28. Kaivo-Oja, N., Bondestam, J., Kamarainen, M., et al. (2003). J. Clin. Endocrinol. Metab. 88, 755–762.

    Article  PubMed  CAS  Google Scholar 

  29. Vitt, U. A., Hsu, S. Y., and Hsueh, A. J. (2001). Mol. Endocrinol. 15, 681–694.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, H., Lustbader, J. W., Liu, Y., Canfield, R. E., and Hendrickson, W. A. (1994). Structure 2, 545–558.

    Article  PubMed  CAS  Google Scholar 

  31. Lapthorn, A. J., Harris, D. C., Littlejohn, A., et al. (1994). Nature 369, 455–461.

    Article  PubMed  CAS  Google Scholar 

  32. Hsu, S. Y., Nakabayashi, K., and Bhalla, A. (2002). Mol. Endocrinol. 16, 1538–1551.

    Article  PubMed  CAS  Google Scholar 

  33. Nothacker, H. P. and Grimmelikhuijzen, C. J. (1993). Biochem. Biophys. Res. Commun. 197, 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  34. Eriksen, K. K., Hauser, F., Schiott, M., Pedersen, K. M., Sondergaard, L., and Grimmelikhuijzen, C. J. (2000). Genome Res. 10, 924–938.

    Article  PubMed  CAS  Google Scholar 

  35. Nishi, S., Hsu, S. Y., Zell, K., and Hsueh, A. J. (2000). Endocrinology 141, 4081–4090.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu, S. Y., Kudo, M., Chen, T., et al. (2000). Mol. Endocrinol. 14, 1257–1271.

    Article  PubMed  CAS  Google Scholar 

  37. Hsu, S. Y., Liang, S. G., and Hsueh, A. J. (1998). Mol. Endocrinol. 12, 1830–1845.

    Article  PubMed  CAS  Google Scholar 

  38. Tensen, C. P., Van Kesteren, E. R., Planta, R. J., et al. (1994). Proc. Natl. Acad. Sci. USA 91, 4816–4820.

    Article  PubMed  CAS  Google Scholar 

  39. Krajnc-Franken, M. A., van Disseldorp, A. J., Koenders, J. E., Mosselman, S., van Duin, M., and Gossen, J. A. (2004). Mol. Cell Biol. 24, 687–696.

    Article  PubMed  CAS  Google Scholar 

  40. Hsu, S. Y. (2003). Trends Endocrinol. Metab. 14, 303–309.

    Article  PubMed  CAS  Google Scholar 

  41. Hsu, S. Y., Nakabayashi, K., Nishi, S., et al. (2002). Science 295, 671–674.

    Article  PubMed  CAS  Google Scholar 

  42. Kawamura, K., Kumagai, J., Sudo, S., et al. (2004). Proc. Natl. Acad. Sci. USA 101, 7323–7328.

    Article  PubMed  CAS  Google Scholar 

  43. Kamat, A. A., Feng, S., Bogatcheva, N. V., Truong, A., Bishop, C. E., and Agoulnik, A. I. (2004). Endocrinology 145, 4712–4720.

    Article  PubMed  CAS  Google Scholar 

  44. Bogatcheva, N. V., Truong, A., Feng, S., Engel, W., Adham, I. M., and Agoulnik, A. I. (2003). Mol. Endocrinol. 17, 2639–2646.

    Article  PubMed  CAS  Google Scholar 

  45. Sudo, S., Kumagai, J., Nishi, S., et al. (2002). J. Biol. Chem. 278, 7855–7862.

    Article  PubMed  CAS  Google Scholar 

  46. Luo, C. W., Dewey, E. M., Sudo, S., et al. (2005). Proc. Natl. Acad. Sci. USA 102, 2820–2825.

    Article  PubMed  CAS  Google Scholar 

  47. Mendive, F. M., Loy, T. V., Claeysen, S., et al. (2005). FEBS Lett. 579, 2171–2176.

    Article  PubMed  CAS  Google Scholar 

  48. Herpin, A., Badariotti, F., Rodet, F., and Favrel, P. (2004). Biochim. Biophys. Acta 1680, 137–144.

    PubMed  CAS  Google Scholar 

  49. Nishi, S., Hsu, S. Y., Zell, K., and Hsueh, A. J. (2000). Endocrinology 141, 4081–4090.

    Article  PubMed  CAS  Google Scholar 

  50. Eriksen, K. K., Hauser, F., Schiott, M., Pedersen, K. M., Sondergaard, L., and Grimmelikhuijzen, C. J. (2000). Genome Res. 10, 924–938.

    Article  PubMed  CAS  Google Scholar 

  51. Dewey, E. M., McNabb, S. L., Ewer, J., et al. (2004). Curr. Biol. 14, 1208–1213.

    Article  PubMed  CAS  Google Scholar 

  52. Honegger, H. W., Dewey, E. M., and Kostron, B. (2004). Acta Biol. Hung. 55, 91–102.

    Article  PubMed  CAS  Google Scholar 

  53. Nakabayashi, K., Matsumi, H., Bhalla, A., et al. (2002). J. Clin. Invest. 109, 1445–1452.

    Article  PubMed  CAS  Google Scholar 

  54. Macdonald, L. E., Wortley, K. E., Gowen, L. C., et al. (2005). Proc. Natl. Acad. Sci. USA 102, 2496–2501.

    Article  PubMed  CAS  Google Scholar 

  55. Erbel, P. J., Karimi-Nejad, Y., De Beer, T., Boelens, R., Kamerling, J. P., and Vliegenthart, J. F. (1999). Eur. J. Biochem. 260, 490–498.

    Article  PubMed  CAS  Google Scholar 

  56. Hewes, R. S. and Taghert, P. H. (2001). Genome Res. 11, 1126–1142.

    Article  PubMed  CAS  Google Scholar 

  57. Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., and Mitaku, S. (2002). FEBS Lett. 520, 97–101.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, X. and Firestein, S. (2002). Nat. Neurosci. 5, 124–133.

    PubMed  CAS  Google Scholar 

  59. Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., and Postlethwait, J. (1999). Genetics 151, 1531–1545.

    PubMed  CAS  Google Scholar 

  60. Sudo, S., Kuwabara, Y., Park, J. L., Hsu, S. Y., and Hsueh, A. J. (2005). Endocrinology, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheau Yu Teddy Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JI., Semyonov, J., Chang, C.L. et al. Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. Endocr 26, 267–276 (2005). https://doi.org/10.1385/ENDO:26:3:267

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:26:3:267

Key Words

Navigation