Skip to main content
Log in

Inhibition of AC-II activity following chronic agonist exposure is modulated by phosphorylation

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic exposure to opiate agonists (followed by agonist withdrawal) leads to a large increase in the activity of adenylyl cyclase (AC) isozymes I, V, VI, and VIII, a phenomenon defined as AC superactivation (or supersensitization). On the other hand, AC isozymes belonging to the AC-II family (AC-II, AC-IV, and AC-VII) show decreased activity, referred to as superinhibition. Using COS-7 cells transiently transfected with μ-opioid receptor and AC-II, we show here that inhibition of PKC and tyrosine kinase activities synergistically reduced the level of AC-II superinhibition. Moreover, inhibitor of Raf-1 kinase also led to a decrease in AC-II superinhibition. These data suggest that Raf-1, activated by PKC and tyrosine kinase, has a role in the regulation of AC-II superinhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avidor-Reiss T., Nevo I., Levy R., Pfeuffer T., and Vogel Z. (1996) Chronic opioid treatment induces adenylyl cyclase V superactivation: involvement of Gβψ. J. Biol. Chem. 271, 21,309–21,315.

    CAS  Google Scholar 

  • Avidor-Reiss T., Nevo I., Saya D., Bayewitch M., and Vogel Z. (1997) Opiate-induced adenylyl cyclase superactivation is isozyme specific. J. Biol. Chem. 272, 5040–5047.

    Article  PubMed  CAS  Google Scholar 

  • Bayewitch M., Avidor-Reiss T., Levy R., Pfeuffer T., Nevo I., Simonds W., and Vogel Z. (1988a) Differential modulation of adenylyl cyclases I and II by various Gβ subunits. J. Biol. Chem. 273, 2273–2276.

    Article  Google Scholar 

  • Bayewitch M., Avidor-Reiss T., Levy R., Pfeuffer T., Nevo I., Simonds W. F., and Vogel Z. (1998b) Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits. FASEB J. 12, 1019–1025.

    PubMed  CAS  Google Scholar 

  • Bayewitch M., Nevo I., Avidor-Reiss T., Levy R., Simonds W. F., and Vogel Z. (2000) Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol. 57, 820–825.

    PubMed  CAS  Google Scholar 

  • Chakrabarti S., Rivera M., Yan S. Z., Tang W. J., and Gintzler A. R. (1998a) Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol. Pharmacol. 54, 655–662.

    PubMed  CAS  Google Scholar 

  • Chakrabarti S., Wang L., Tang W. J., and Gintzler A. R. (1998b) Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence. Mol. Pharmacol. 54, 949–953.

    PubMed  CAS  Google Scholar 

  • Jacobowitz O. and Iyengar R. (1994) Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc. Natl Acad. Sci U.S.A. 91, 10,630–10,634.

    Article  CAS  Google Scholar 

  • Kawabe J., Iwami G., Ebina T., Ohno S., Katada T., Ueda Y., et al. (1994) Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J. Biol. Chem. 269, 16,554–16,558.

    CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lou L. G. and Pei G. (1997) Modulation of protein kinase C and cAMP-dependent protein kinase by delta-opioid. Biochem. Biophys. Res. Commun. 236, 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Mollner S. Beck K., and Pfeuffer T. (1995) Acylation of adenylyl cyclase catalyst is important for enzymic activity. FEBS Lett. 371, 241–244.

    Article  PubMed  CAS  Google Scholar 

  • Nasman J., Kukkonen J. P., Holmqvist T., and Akerman K. E. (2002) Different roles for Gi and Go proteins in modulation of adenylyl cyclase type-2 activity. Neurochem. 83, 1252–1261.

    Article  CAS  Google Scholar 

  • Nevo I., Avidor-Reiss T., Levy R., Bayewitch M., Heldman E., and Vogel Z. (1998) Regulation of adenylyl cyclase isozymes upon acute and chronic activation of inhibitory receptors. Mol. Pharmacol. 54, 419–426.

    PubMed  CAS  Google Scholar 

  • Schallmach E., Steiner D., and Vogel Z. (2006) Adenylyl cyclase type II activity is regulated by two different mechanisms: implications for acute and chronic opioid exposure. Neuropharmacology. Mar 14; [Epub ahead of print]

  • Simonds W. F. (1999) G protein regulation of adenylate cyclase. Trends Pharmacol. Sci. 20, 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Slupsky J. R., Quitterer U., Weber C. K., Gierschik P., Lohse M. J., and Rapp U. R. (1999) Binding of Gbetagamma subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Curr. Biol. 9, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Steiner D., Avidor-Reiss T., Schallmach E., Saya D., and Vogel Z. (2005) Inhibition and superactivation of the calcium-stimulated isoforms of adenylyl cyclase: role of gbetagamma dimers. J. Mol. Neurosci. 27, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara R. K. and Taussig R. (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. 2, 168–184.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara R. K., Dessauer C. W., and Gilman A. G. (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol. 36, 461–480.

    Article  PubMed  CAS  Google Scholar 

  • Tan C. M., Kelvin D. J., Litchfield D. W., Ferguson S. S., and Feldman R. D. (2001) Tyrosine kinase-mediated serine phosphorylation of adenylyl cyclase. Biochemistry 40, 1702–1709.

    Article  PubMed  CAS  Google Scholar 

  • Tsu R. C. and Wong Y. H. (1996) Gi-mediated stimulation of type II adenylyl cyclase is augmented by Gq-coupled receptor activation and phorbol ester treatment. J. Neurosci. 16, 1317–1323.

    PubMed  CAS  Google Scholar 

  • Varga E. V., Rubenzik M., Grife V., Sugiyama M., Stropova D., Roeske W. R., and Yamamura H. I. (2002) Involvement of Raf-1 in chronic delta-opioid receptor agonist-mediated adenylyl cyclase superactivation. Eur. J. Pharmacol. 451, 101–102.

    Article  PubMed  CAS  Google Scholar 

  • Varga E. V., Rubenzik M. K., Stropova D., Sugiyama M., Grife V., Hruby V. J., et al. (2003) Converging protein kinase pathways mediate adenylyl cyclase superactivation upon chronic delta-opioid agonist treatment. J. Pharmacol. Exp. Ther. 306, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Varga E. V., Stropova D., Rubenzik M., Waite S., Roeske W. R., and Yamamura H. I. (1999) Phosphorylation of adenylyl cyclase VI upon chronic delta-opioid receptor stimulation. Eur. J. Pharmacol. 364, R1–3.

    Article  PubMed  CAS  Google Scholar 

  • Vogel Z., Barg J., Levy R., Saya D., Heldman E., and Mechoulam R. (1993) Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J. Neurochem. 61, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Watts V. J. (2002) Molecular mechanisms for heterologous sensitization of adenylate cyclase. J. Pharmacol. Exp. Ther. 302, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Watts V. J. and Neve K. A. (2005) Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol. Ther. 106, 405–421.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M. and Cooper D. M. (1993) Type-specific stimulation of adenylyl cyclase by protein kinase. J. Biol. Chem. 268, 4604–4607.

    PubMed  CAS  Google Scholar 

  • Zimmermann G. and Taussig R. (1996) Protein kinase C alters the responsiveness of adenylyl cyclases to G protein alpha and betagamma subunits. J. Biol. Chem. 271, 27,161–27,166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schallmach, E., Steiner, D. & Vogel, Z. Inhibition of AC-II activity following chronic agonist exposure is modulated by phosphorylation. J Mol Neurosci 29, 115–122 (2006). https://doi.org/10.1385/JMN:29:2:115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:2:115

Index Entries

Navigation