Skip to main content
Log in

Mitogen-activated protein kinases and cerebral ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinases (MAPKs) have crucial roles in signal transduction from the cell surface to the nucleus and regulate cell death and survival. Recent papers support the hypothesis that neuronal apoptosis and cerebral ischemia induce the robust activation of MAPK cascades. Although extracellular signal-regulated kinases pathways promote cell survival and proliferation, and c-Jun N-terminal protein kinases/p38 pathways induce apoptosis in general, the roles of MAPK cascades in neuronal death and survival seem to be complicated and altered by the type of cells and the magnitude and timing of insults. Some specific inhibitors of MAPK cascades provide important information in clarifying the roles of each molecule in neuronal death and survival, but the results are still controversial. Further studies are necessary to elucidate the activated signal transduction upstream and downstream of the cascades in cerebral ischemia, and to define the crosstalk between the cascades and other signaling pathways, before MAPK cascades can be candidate molecules in the treatment of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis R. J. (1993) The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14,553–14,556.

    CAS  Google Scholar 

  2. Nishida E. and Gotoh Y. (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131.

    Article  PubMed  CAS  Google Scholar 

  3. Seger R. and Krebs E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  4. Hunter T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236.

    Article  PubMed  CAS  Google Scholar 

  5. Dirnagl U., Iadecola C., and Moskowitz M. A. (1999) Pathobiology of ischemic stroke: an integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  6. Nowak T. S., Jr. and Kiessling M. (1999) Reprogramming of gene expression after ischemia, in Cerebral Ischemia: Molecular and Cellular Pathophysiology (Walz W., ed.), Humana, Totowa, NJ, pp. 145–216.

    Google Scholar 

  7. Sharp F. R., Lu A., Tang Y., and Millhorn D. E. (2000) Multiple molecular penumbras after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 1011–1032.

    Article  PubMed  CAS  Google Scholar 

  8. Fiore R. S., Bayer V. E., Pelech S. L., Posada J., Cooper J. A., and Baraban J. M. (1993) p42 mitogen-activated protein kinase in brain: prominent localization in neuronal cell bodies and dendrites. Neuroscience 55, 463–472.

    Article  PubMed  CAS  Google Scholar 

  9. Thomas K. L. and Hunt S. P. (1993) The regional distribution of extracellularly regulated kinase-1 and -2 messenger RNA in the adult rat central nervous system. Neuroscience 56, 741–757.

    Article  PubMed  CAS  Google Scholar 

  10. Ortiz J., Harris H. W., Guitart X., Terwillinger R. Z., Haycock J. W., and Nestler E. J. (1994) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J. Neurosci. 15, 1285–1297.

    Google Scholar 

  11. Roy M. and Sapolsky R. (1999) Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci. 11, 419–422.

    Article  Google Scholar 

  12. Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., and Johnson E. M., Jr. (1998) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106, 829–844.

    Article  Google Scholar 

  13. Kummer J. L., Rao P. K., and Heidenreich K. A. (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 20,490–20,494.

    Article  CAS  Google Scholar 

  14. Xia Z., Dickens M., Raingeaud J., Davis R. J., and Greenberg M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  15. Deshmukh M., Vasilakos J., Deckwerth T. L., Lampe P. A., Shivers B. D., and Johnson E. M., Jr. (1996) Genetic and metabolic status of NGF-deprived sympathetic neurons saved by an inhibitor of ICE family proteases. J. Cell. Biol. 135, 1341–1354.

    Article  Google Scholar 

  16. Park D. S., Stefanis L., Yan C. Y. I., Farinelli S. E., and Greene L. A. (1996) Ordering the cell death pathway. Differential effects of BCL2, an interleukin-1-converting enzyme family protease inhibitor, and other survival agents on JNK activation in serum/nerve growth factor-deprived PC12 cells. J. Biol. Chem. 271, 21,898–21,905.

    Google Scholar 

  17. Bazenet C. E., Mota M. A., and Rubin L. L. (1998) The small GTP-binding protein cdc42 is required for nerve growth factor withdrawal-induced neuronal death. Proc. Natl. Acad. Sci. USA 95, 3984–3989.

    Article  PubMed  CAS  Google Scholar 

  18. Luo Y., Umegaki H., Wang X., Abe R., and Roth G. S. (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J. Biol. Chem. 273, 3756–3764.

    Article  PubMed  CAS  Google Scholar 

  19. Eilers A., Whitfield J., Babij C., Rubin L. L., and Ham J. (1998) Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J. Neurosci. 18, 1713–1724.

    PubMed  CAS  Google Scholar 

  20. Maroney A. C., Finn J. P., Bozyczko-Coyne D., O’Kane T. M., Neff N. T., Tolkovsky A. M., et al. (1999) CEP-1347(KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insult. J. Neurochem. 73, 1901–1912.

    PubMed  CAS  Google Scholar 

  21. Behrens A., Sibilia M., and Wagner E. F. (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Gene. 21, 326–329.

    Article  CAS  Google Scholar 

  22. Chihab R., Ferry C., Koziel V., Monin P., and Daval J. L. (1998) Sequential activation of activator protein-1-related transcription factors and JNK protein kinases may contribute to apoptotic death induced by transient hypoxia in developing brain neurons. Brain Res. 63, 105–120.

    Article  Google Scholar 

  23. Maroney A. C., Glicksman M. A., Basma A. N., Walton K. M., Knight E., Jr., Murphy C. A., et al. (1998) Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J. Neurosci. 18, 104–111.

    PubMed  CAS  Google Scholar 

  24. Del Peso L., Gonzalez-Garcia M., Page C., Herrera R., and Nunez G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689.

    Article  PubMed  Google Scholar 

  25. Shimoke K., Yamagishi S., Yamada M., Ikeuchi T., and Hatanaka H. (1999) Inhibition of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity in apoptosis of cultured cerebellar granule neurons. Dev. Brain Res. 112, 243–253.

    Article  Google Scholar 

  26. Kawasaki H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y., and Nishida E. (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induce apoptosis in rat cerebellar granule cells. J. Biol. Chem. 272, 18,518–18,521.

    CAS  Google Scholar 

  27. Mukherjee P. K., DeCoster M. A., Campbell F. Z., Davis R. J., and Bazan N. G. (1999) Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274, 6493–6498.

    Article  PubMed  CAS  Google Scholar 

  28. Ghatan S., Larner S., Kinoshita Y., Hetman M., Patel L., Xia Z., Youle R. J., and Morrison R. S. (2000) p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J. Cell Biol. 150, 335–348.

    Article  PubMed  CAS  Google Scholar 

  29. Horstmann S., Kahle P. J., and Borasio G. D. (1998) Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro. J. Neurosci. Res. 52, 483–490.

    Article  PubMed  CAS  Google Scholar 

  30. Heidenreich K. A. and Kummer J. L. (1996) Inhibition of p38 mitogen-activated protein kinase by insulin in cultured fetal neurons. J. Biol. Chem. 271, 9891–9894.

    Google Scholar 

  31. Kanamoto T., Mota M., Takeda K., Rubin L. L., Miyazono K., Ichijo H., and Bazenet C. E. (2000) Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in symathetic neurons. Mol. Cell Biol. 20, 196–204.

    Article  PubMed  CAS  Google Scholar 

  32. Roulston A., Reinhard C., Amiri P., and Williams L. T. (1998) Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J. Biol. Chem. 273, 10,232–10,239.

    Article  CAS  Google Scholar 

  33. Fukunaga K. and Miyamoto E. (1998) Role of MAP kinase in neurons. Mol. Neurobiol. 16, 79–95.

    PubMed  CAS  Google Scholar 

  34. Owada K., Sanjo N., Kobayashi T., Mizusawa H., Muramatsu H., Muramatsu T., and Michikawa M. (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J. Neurochem. 73, 2084–2092.

    PubMed  CAS  Google Scholar 

  35. Anderson C. N. G. and Tolkovsky A. M. (1999) A role for MAPK/ERK in sympathetic neuron survival:protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J. Neurosci. 19, 664–673.

    PubMed  CAS  Google Scholar 

  36. Yan C. Y. I. and Greene L. A. (1998) Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J. Neurosci. 18, 4042–4049.

    PubMed  CAS  Google Scholar 

  37. Mazzoni I. E., Said F. A., Aloyz R., Miller F. D., and Kaplan D. (1999) Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J. Neurosci. 19, 9716–9727.

    PubMed  CAS  Google Scholar 

  38. Hetman M., Kanning K., Cavanaugh J. E., and Xia Z. (1999) Neuroprotection by brain-derived neurotrophic factor (BDNF) is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 22,569–22,580.

    Article  CAS  Google Scholar 

  39. Bonni A., Brunet A., West A. E., Datta S. R., Takasu M. A., and Greenberg M. E. (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362.

    Article  PubMed  CAS  Google Scholar 

  40. Schmid R. S., Graff R. D., Schaller M. D., Chen S., Schachner M., Hemperly J. J., and Maness P. F. (1999) NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol. 38, 542–581.

    Article  PubMed  CAS  Google Scholar 

  41. Virdee K. and Tolkovsky A. M. (1995) Activation of p44 and p42 MAP kinases is not essential for the survival of rat sympathetic neurons. Eur. J. Neurosci. 7, 2159–2169.

    Article  PubMed  CAS  Google Scholar 

  42. Runden E., Seglen P. O., Haug F. M., Ottersen O. P., Wieloch T., Shamloo M., and Laake J. H. (1998) Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J. Neurosci. 18, 7296–7305.

    PubMed  CAS  Google Scholar 

  43. Park J. A. and Koh J. Y. (1999) Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73, 450–456.

    Article  PubMed  CAS  Google Scholar 

  44. Stanciu M., Wang Y., Kentor R., Burke N., Watkins S., Kress G., et al. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 12,200–12,206.

    Article  CAS  Google Scholar 

  45. Satoh T., Nakatsuka D., Watanabe Y., Nagata I., Kikuchi H., and Namura S. (2000) Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci. Lett. 282, 163–166.

    Article  Google Scholar 

  46. Kirino T. (1982) Delayed neuronal death in the gerbil hippocamus following ischemia. Brain Res. 239, 57–69.

    Article  PubMed  CAS  Google Scholar 

  47. Heron A., Pollard H., Dessi F., Moreau J., Lasbennes F., Ben-Ari Y., and Charriaut-Marlangue C. (1993) Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain. J. Neurochem. 61, 1973–1976.

    Article  PubMed  CAS  Google Scholar 

  48. Nitatori T., Sato N., Waguri S., Karasawa Y., Araki H., Shibanai K., Kominami E., and Uchiyama Y. (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15, 1001–1011.

    PubMed  CAS  Google Scholar 

  49. MacManus J. P., Hill I. E., Preston E., Rasquinha I., Walker T., and Buchan A. M. (1995) Differences in DNA fragmentation following transient cerebral ischemia or decapitation ischemia in rats. J. Cereb. Blood Flow Metab. 15, 728–737.

    PubMed  CAS  Google Scholar 

  50. Walton K. M., DiRocco R., Bartlett B. A., Koury E., Marcy V. R., Jarvis B., Schaefer E. M., and Bhat R. V. (1998) Activation of p38MAPK in microglia after ischemia. J. Neurochem. 70, 1764–1767.

    Article  PubMed  CAS  Google Scholar 

  51. Gillardon F., Spranger M., Tiesler C., and Hossmann K. A. (1999) Expression of cell death-associated phospho-c-Jun and p53-activated gene 608 in hippocampal CA1 neurons following global ischemia. Brain Res. Mol. Brain Res. 73, 138–143.

    Article  PubMed  CAS  Google Scholar 

  52. Sugino T., Nozaki K., Takagi Y., Hattori I., Hashimoto N., Moriguchi T., and Nishida E. (2000) Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J. Neurosci. 20, 4506–4514.

    PubMed  CAS  Google Scholar 

  53. Takagi Y., Nozaki K., Sugino T., Hattori I., and Hashimoto N. (2000) Phosphorylation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice. Neurosci. Lett. 294, 117–120.

    Article  PubMed  CAS  Google Scholar 

  54. Yang D. D., Kuan C. Y., Whitmarsh A. J., Rincon M., Zheng T. S., Davis R. J., Rakic P., and Flavell R. A. (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870.

    Article  PubMed  CAS  Google Scholar 

  55. Ozawa H., Shioda S., Dohi K., Matsumoto H., Mizushima H., Zhou C. J., et al. (1999) Delayed neuronal cell death in the rat hippocampus is mediated by the mitogen-activated protein kinase signal transduction pathway. Neurosci. Lett. 262, 57–60.

    Article  PubMed  CAS  Google Scholar 

  56. Hu B. R. and Wieloch T. (1994) Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J. Neurochem. 62, 1357–1367.

    Article  PubMed  CAS  Google Scholar 

  57. Hu B. R., Liu C. L., and Park D. J. (2000) Alteration of MAP kinase pathways after transient forebrain ischemia. J. Cereb. Blood Flow Metab. 20, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  58. Shioda S., Ozawa H., Dohi K., Mizushima H., Matsumoto K., Nakajo S., et al. (1998) PACAP protects hippocampal neurons against apoptosis:involvement of JNK/SAPK signaling pathway. Ann. NY Acad. Sci. 865, 111–117.

    Article  PubMed  CAS  Google Scholar 

  59. Tsuji M., Inanami O., and Kuwabara M. (2000) Neuroprotective effect of alpha-phenyl-N-tertbutylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci. Lett. 282, 41–44.

    Article  PubMed  CAS  Google Scholar 

  60. Linnik M. D., Zobrist R. H., and Hatfield M. D. (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24, 2002–2008.

    PubMed  CAS  Google Scholar 

  61. Charriault-Marlangue C., Margaill I., Represa A., Popovici T., Plotkine M., and Ben-Ari Y. (1996) Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J. Cereb. Blood Flow Metab. 16, 186–194.

    Google Scholar 

  62. Choi D. W. (1996) Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 8, 667–672.

    Google Scholar 

  63. Li Y., Powers C., Jiang N., and Chopp M. (1998) Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in rat. J. Neurol. Sci. 156, 119–132.

    Article  PubMed  CAS  Google Scholar 

  64. Herdegen T., Claret F. X., Kallunki T., Martin-Villalba A., Winter C., Hunter T., and Karin M. (1998) Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J. Neurosci. 18, 5124–5135.

    PubMed  CAS  Google Scholar 

  65. Martin-Villalba A., Winter C., Brecht S., Buschmann T., Zimmermann M., and Herdegen T. (1998) Rapid and long-lasting suppression of the ATF-2 transcription factor is a common response to neuronal injury. Brain Res. Mol. Brain Res. 62, 158–166.

    Article  PubMed  CAS  Google Scholar 

  66. Kitagawa H., Warita H., Sasaki C., Zhang W. R., Sakai K., Shiro Y., et al. (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci. Lett. 274, 45–48.

    Article  PubMed  CAS  Google Scholar 

  67. Irving E. A., Barone F. C., Reith A. D., Hadingham S. J., and Parsons A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischemia in the rat. Brain Res. Mol. Brain Res. 77, 65–75.

    Article  PubMed  CAS  Google Scholar 

  68. Wu D. C., Ye W., Che X. M., and Yang G. Y. (2000) Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J. Cereb. Blood Flow Metab. 20, 1320–1330.

    Article  PubMed  CAS  Google Scholar 

  69. Barone F. C. and Feuerstein G. Z. (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19, 819–834.

    Article  PubMed  CAS  Google Scholar 

  70. Alessandrin A., Namura S., Moskowitz M. A., and Bonventre J. V. (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12,866–12,869.

    Google Scholar 

  71. Kitagawa K., Matsumoto M., Tagaya M., Hata R., Ueda H., Niinobe M., et al. (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24.

    Article  PubMed  CAS  Google Scholar 

  72. Kirino T., Tsujita Y., and Tamura A. (1991a) Induced tolerance to ischemia in gerbil hippocampal neuron with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effected neuronal death in the gerbil hippocampus. Neurosci. Res. 20, 95–99.

    Google Scholar 

  73. Kirino T., Tsujita Y., and Tamura A. (1991b) Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11, 299–307.

    PubMed  CAS  Google Scholar 

  74. Nowak T. S., Jr., Ikeda J., and Nakajima T. (1993) 70 kilodalton heat shock protein and c-fos gene expression as indicators of neuronal pathophysiology after ischemia. Progr. Brain Res. 96, 195–208.

    Article  CAS  Google Scholar 

  75. Shimazaki K., Ishida A., and Kawai N. (1994) Increase in Bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci. Res. 20, 95–99.

    Article  PubMed  CAS  Google Scholar 

  76. Kato H., Kogure K., Araki T., and Itoyama Y. (1995) Induction of Jun-like immunoreactivity in astrocytes in gerbil hippocampus with ischemic tolerance. Neurosci. Lett. 189, 13–16.

    Article  PubMed  CAS  Google Scholar 

  77. Heurteaux C., Lauritzen I., Widmann C., and Lazdunski M. (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA 92, 4666–4670.

    Article  PubMed  CAS  Google Scholar 

  78. Kawahara N., Ide T., Saito N., Kawai K., and Kirino T. (1998) Propentofylline potentiates induced ischemic tolerance in gerbil hippocampal neurons via adenosine receptor. J. Cereb. Blood Flow Metab. 18, 472–475.

    Article  PubMed  CAS  Google Scholar 

  79. Murry C. E., Jennings R. B., and Reimer K. A. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136.

    PubMed  CAS  Google Scholar 

  80. Weinbrenner C., Liu G.-S., Cohen M. V., and Downey J. M. (1997) Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J. Mol. Cell Cardiol. 29, 2383–2391.

    Article  PubMed  CAS  Google Scholar 

  81. Nagarkatti D. S. and Sha’afi R. I. (1998) Role of p38 MAP kinase in myocardial stress. J. Mol. Cell Cardiol. 30, 1651–1664.

    Article  PubMed  CAS  Google Scholar 

  82. Armstrong S. C., Gao W., Lane J. R., and Ganote C. E. (1998) Protein phosphatase inhibitors calyculin A and fostriecin protect rabbit cardiomyocytes in late ischemia. J. Mol. Cell Cardiol. 30, 61–73.

    Article  PubMed  CAS  Google Scholar 

  83. Baines C. P., Liu G. S., Birincioglu M., Critz S. D., Cohen M. V., and Downey J. M. (1999) Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am. J. Physiol. 276, 1361–1368.

    Google Scholar 

  84. Haq S. E. A., Clerk A., and Sugden P. H. (1998) Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. 434, 305–308.

    Article  PubMed  CAS  Google Scholar 

  85. Sommer C., Gass P., and Kiessling M. (1995) Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol. 5, 135–144.

    PubMed  CAS  Google Scholar 

  86. Kato H., Kogure K., Araki T., and Itoyama Y. (1995) Induction of Jun-like immunoreactivity in astrocytes in gerbil hippocampus with ischemic tolerance. Neurosci. Lett. 189, 13–16.

    Article  PubMed  CAS  Google Scholar 

  87. Sugino T., Nozaki K., and Hashimoto N. (2000) Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid. Neurosci. Lett. 278, 101–104.

    Article  PubMed  CAS  Google Scholar 

  88. Tauskela J. S., Chakravarthy B. R., Murray C. L., Wang Y., Comas T., Hogan M., Hakim A., and Morley P. (1999) Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain. Res. 827, 143–151.

    Article  PubMed  CAS  Google Scholar 

  89. Shamloo M., Rytter A., and Wieloch T. (1999) Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93, 81–88.

    Article  PubMed  CAS  Google Scholar 

  90. Gonzalez-Zulueta M., Feldman A. B., Klesse L. J., Kalb R. G., Dillman J. F., Parada L. F., Dawson T. M., and Dawson V. L. (2000) Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA 97, 436–441.

    Article  PubMed  CAS  Google Scholar 

  91. Gu Z., Jiang Q., Zhang G., Cui Z., and Zhu Z. (2000) Diphosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal protein kinases in brain ischemic tolerance in rat. Brain Res. 860, 157–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, K., Nishimura, M. & Hashimoto, N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 23, 1–19 (2001). https://doi.org/10.1385/MN:23:1:01

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:23:1:01

Index Entries

Navigation