Skip to main content
Log in

Glutamate signaling to ras-MAPK in striatal neurons

Mechanisms for inducible gene expression and plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Extracellular signals can regulate mitogen-activated protein kinase (MAPK) cascades through a receptor-mediated mechanism in postmitotic neurons of adult mammalian brain. Both ionotropic and metabotropic glutamate receptors (mGluRs) are found to possess such an ability in striatal neurons. NMDA and AMPA receptor signals seem to share a largely common route to MAPK phosphorylation which involves first activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) via Ca2+ influx, followed by subsequent induction of phosphoinositide 3-kinase (PI3-kinase). Through its lipid and protein kinase activity, active PI3-kinase may transduce signals to Ras-MAPK cascades via at least two distinct pathways. A novel, Ca2+-independent pathway is believed to mediate mGluR signals to Ras-MAPK activation. As an information superhighway between the surface membrane and the nucleus, Ras-MAPK cascades, through activating their specific nuclear transcription factor targets, are actively involved in the regulation of gene expression. Emerging evidence shows that MAPK-mediated genomic responses in striatal neurons to drug exposure contribute to the development of neuroplasticity related to addictive properties of drugs of abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenamyre J. T. and Porter R. H. (1994) Anatomy and physiology of glutamate in the CNS. Neurology 44, S7-S13.

    PubMed  CAS  Google Scholar 

  2. Michaelis E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  3. Schoepfer R., Monyer H., Sommer B., et al. (1994) Molecular biology of glutamate receptors. Prog. Neurobiol. 42, 353–357.

    Article  PubMed  CAS  Google Scholar 

  4. Ozawa S., Kamiya H., and Tsuzuki K. (1998) Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    Article  PubMed  CAS  Google Scholar 

  5. Conn P. J. and Pin J. P. (1997) Pharmacology and function of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Article  PubMed  CAS  Google Scholar 

  6. Ascher P. and Nowak L. (1987) Electrophysiological studies of NMDA receptors. Trends Neurosci. 10, 284–287.

    Article  CAS  Google Scholar 

  7. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., and Barker J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  8. Hollmann M., Hartley M., and Heinemann S. (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853.

    Article  PubMed  CAS  Google Scholar 

  9. Peyssonnaux C. and Eychene A. (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93, 53–62.

    Article  PubMed  CAS  Google Scholar 

  10. Volmat V. and Pouyssegur J. (2001) Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol. Cell. 93, 71–79.

    Article  PubMed  CAS  Google Scholar 

  11. Ray L. B. and Sturgill T. W. (1987) Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84, 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  12. Lee J. D., Ulevitch R. J., and Han J. (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun. 213, 715–724.

    Article  PubMed  CAS  Google Scholar 

  13. Thiels E. and Klann E. (2001) Extracellular signal-regulated kinase, synaptic plasticity, and memory. Rev. Neurosci. 12, 327–345.

    PubMed  CAS  Google Scholar 

  14. Gallo K. A. and Johnson G. L. (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat. Rev. Mol. Cell. Biol. 3, 663–672.

    Article  PubMed  CAS  Google Scholar 

  15. Pearson G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., and Cobb M. H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  16. Wang J. Q., Mao L., Parelkar N. K., Tang Q., and Choe E. S. (2003) Glutamate-regulated behavior, transmitter release, gene expression and addictive plasticity in the striatum: roles of metabotropic glutamate receptors. Curr. Neuropharmacol. 1, 1–20.

    Article  CAS  Google Scholar 

  17. Mao L., Tang Q., Samdani S., Liu Z., and Wang J. Q. (2004) Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons. Eur. J. Neurosci. (In press.)

  18. Vanhoutte P., Barnier J. V., Guibert B., Pages C., Besson M. J., Hipskind R. A., and Caboche J. (1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell. Biol. 19, 136–146.

    PubMed  CAS  Google Scholar 

  19. Schwarzschild M. A., Cole R. L., Meyers M. A., and Hyman S. E. (1999) Contrasting calcium dependencies of SAPK and ERK activation by glutamate in cultured striatal neurons. J. Neurochem. 72, 2248–2255.

    Article  PubMed  CAS  Google Scholar 

  20. Sgambato V., Vanhoutte P., Pages C., Rogard M., Hipskind R., Besson M. J., and Caboche J. (1998) In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J. Neurosci. 18, 214–226.

    PubMed  CAS  Google Scholar 

  21. Sgambato V., Pages C., Rogard M., Besson M. J., and Caboche J. (1998) Extracellular signal-regulated kinase controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 8814–8825.

    PubMed  CAS  Google Scholar 

  22. Vincent S. R., Sebben M., Dumuis A., and Bockaert J. (1998) Neurotransmitter regulation of MAP kinase signaling in striatal neurons in primary culture. Synapse 29, 29–36.

    Article  PubMed  CAS  Google Scholar 

  23. English J. D. and Sweatt J. D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 272, 24,329–24,332.

    Google Scholar 

  24. English J. D. and Sweatt J. D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19,103–19,106.

    Article  CAS  Google Scholar 

  25. Xia Z., Dudek H., Miranti C. K., and Greenberg M. E. (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436.

    PubMed  CAS  Google Scholar 

  26. Fuller G., Veitch K., Ho L. K., Cruise L., and Morris B. J. (2001) Activation of p44/p42 MAP kinase in striatal neurons via kainate receptors and P13 kinase. Mol. Brain Res. 89, 126–132.

    Article  PubMed  CAS  Google Scholar 

  27. Perkinton M. S., Ip J. K., Wood G. L., Crossthwaite A. J., and Williams R. J. (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurons. J. Neurochem. 80, 239–254.

    Article  PubMed  CAS  Google Scholar 

  28. Kurino M., Fukunaga K., Ushio Y., and Miyamoto E. (1995) Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J. Neurochem. 65, 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  29. Perkinton M. S., Sihra T. S., and Williams R. J. (1999) Ca2+-permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons. J. Neurosci. 19, 5861–5874.

    PubMed  CAS  Google Scholar 

  30. Williams R. J. and Glowinski J. (1996) Cyclothiazide unmasks an AMPA-evoked release of arachidonic acid from cultured striatal neurons. J. Neurochem. 67, 1551–1558.

    Article  PubMed  CAS  Google Scholar 

  31. Luttrell L. M. (2002) Activation and targeting of mitogen-activated protein kinases by G-protein-coupled receptors. Can. J. Physiol. Pharmacol. 80, 375–382.

    Article  PubMed  CAS  Google Scholar 

  32. Choe E. S. and Wang J. Q. (2001) Group I metabotropic glutamate receptor activation increases phosphorylation of cAMP response element-binding protein, Elk-1 and extracellular signal-regulated kinases in rat dorsal striatum. Mol. Brain Res. 94, 75–84.

    Article  PubMed  CAS  Google Scholar 

  33. Fiore R. S., Murphy T. H., Sanghera J. S., Pelech S. L., and Baraban J. M. (1993) Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem. 61, 1626–1633.

    Article  PubMed  CAS  Google Scholar 

  34. Peavy R. D. and Conn P. J. (1998) Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J. Neurochem. 71, 603–612.

    Article  PubMed  CAS  Google Scholar 

  35. Iacovelli L., Bruno V., Salvatore L., et al. (2002) Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J. Neurochem. 82, 216–223.

    Article  PubMed  CAS  Google Scholar 

  36. Calabresi P., Saulle E., Marfia G. A., et al. (2001) Activation of metabotropic glutamate receptor subtype 1/protein kinase C/mitogen-activated protein kinase pathway is required for postischemic long-term potentiation in the striatum. Mol. Pharmacol. 60, 808–815.

    PubMed  CAS  Google Scholar 

  37. D’Onofrio M., Cuomo L., Battaglia G., et al. (2001) Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J. Neurochem. 78, 435–445.

    Article  PubMed  CAS  Google Scholar 

  38. Ferraguti F., Baldani-Guerra B., Corsi M., Nakanishi S., and Corti C. (1999) Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur. J. Neurosci. 11, 2073–2082.

    Article  PubMed  CAS  Google Scholar 

  39. Phillips T., Barnes A., Scott S., Emson P., and Rees S. (1998) Human metabotropic glutamate receptor 2 couples to the MAP kinase cascade in chinese hamster ovary cells. Neuroreport 13, 2335–2339.

    Article  Google Scholar 

  40. Mukherjee P. K., DeCoster M. A., Campbell F. Z., Davis R. J., and Bazan N. G. (1999) Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274, 6493–6498.

    Article  PubMed  CAS  Google Scholar 

  41. Kawasaki H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y., and Nishida E. (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. Biol. Chem. 272, 18,518–18,521.

    CAS  Google Scholar 

  42. Chen R. W., Qin Z. H., Ren M., Kanai H., Chalecka-Franaszek E., Leeds P., and Chuang D. M. (2003) Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J. Neurochem. 84, 566–575.

    Article  PubMed  CAS  Google Scholar 

  43. Jeon S. H., Kim Y. S., Bae C. D., and Park J. B. (2000) Activation of JNK and p38 in rat hippocampus after kainic acid induced seizure. Exp. Mol. Med. 32, 227–230.

    PubMed  CAS  Google Scholar 

  44. Ferrer I., Blanco R., and Carmona M. (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol. Brain Res. 94, 48–58.

    Article  PubMed  CAS  Google Scholar 

  45. Schwarzschild M. A., Cole R. L., and Hyman S. E. (1997) Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J. Neurosci. 17, 3455–3466.

    PubMed  CAS  Google Scholar 

  46. Tang Q., Mao L., Samdani S., and Wang J. Q. (2004) NMDA receptor signaling to extracellular signal-regulated protein kinase phosphorylation in cultured rat striatal neurons. submitted.

  47. Wymann M. P. and Pirola L. (1998) Structure and function of phosphoinositide 3-kinase. Biochem. Biophys. Acta 1436, 127–150.

    PubMed  CAS  Google Scholar 

  48. Shin B. C., Suzuki M., Inukai K., Anai M., Asano T., and Takata K. (1998) Multiple isoforms of the regulatory subunit for phosphatidylinositol 3-kinase (PI3-kinase) are expressed in neurons in the rat brain. Biochem. Biophys. Res. Comm. 246, 313–319.

    Article  PubMed  CAS  Google Scholar 

  49. Bernstein H. G., Keilhoff C., Reiser M., Freese S., and Wetzker R. (1998) Tissue distribution and subcellular localization of a G-protein activated phosphoinositide 3-kinase, An immunohistochemical study. Cell. Mol. Biol. 44, 973–983.

    PubMed  CAS  Google Scholar 

  50. Joyal J. L., Burks D. J., Pons S., Matter W. F., Vlahos C. J., White M. F., and Sacks D. B. (1997) Calmodulin activates phosphatidylinositol 3-kinase. J. Biol. Chem. 272, 28,183–28,186.

    CAS  Google Scholar 

  51. Fischer R., Julsgart J., and Berchtold M. W. (1998) High affinity calmodulin target sequence in the signaling molecule PI 3-kinase. FEBS Lett. 425, 175–177.

    Article  PubMed  CAS  Google Scholar 

  52. Chan T. O., Rittenhouse S. E., and Tsichlis P. N. (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Ann. Rev. Biochem. 68, 965–1014.

    Article  PubMed  CAS  Google Scholar 

  53. Datta S. R., Brunet A., and Greenberg M. E. (1999) Cellular survival: a paly in three Akts. Genes Dev. 13, 2905–2927.

    Article  PubMed  CAS  Google Scholar 

  54. Yart A., Roche S., Wetzker R., Laffargue M., Tonks N., Mayeux P., Chap H., and Raynal P. (2002) A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. J. Biol. Chem. 277, 21,167–21,178.

    Article  CAS  Google Scholar 

  55. Bondeva T., Pirola L., Bulgarelli-Leva G., Rubio I., Wetzker R., and Wymann M. P. (1998) Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. Science 282, 293–296.

    Article  PubMed  CAS  Google Scholar 

  56. Hu Q. J., Klippel A., Muslin A. J., Fantl W. J., and Williams L. T. (1995) Ras-dependent induction of cellular-responses by constitutively active phosphatidylinositol-3 kinase. Science 268, 100–102.

    Article  PubMed  CAS  Google Scholar 

  57. Pandey S. K., Theberge J. F., Bernier M., and Srivastava A. K. (1999) Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 38, 14,667–14,675.

    Article  CAS  Google Scholar 

  58. Rodrigues-Viciana P., Warne P. H., Dhand R., et al. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532.

    Article  Google Scholar 

  59. Winkler D. G., Johnson J. C., Cooper J. A., and Vojtek A. B. (1997) Identification and characterization of mutations in Ha-Ras that selectively decrease binding to cRaf-1. J. Biol. Chem. 272, 24,402–24,409.

    Article  CAS  Google Scholar 

  60. Osada M., Tolkacheva T., Li W., Chan T. O., Tsichlis P. N., Saez R., Kimmelman A. C., and Chan A. M. (1999) Differential roles of Akt, Rac, and Ral in R-Ras-mediated cellular transformation, adhesion, and survival. Mol. Cell. Biol. 19, 6333–6344.

    PubMed  CAS  Google Scholar 

  61. Xue L., Murray J. H., and Tolkovsky A. M. (2000) The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275, 8817–8824.

    Article  PubMed  CAS  Google Scholar 

  62. Suga J., Yoshimasa Y., Yamada K., et al. (1997) Differential activation of mitogen-activated protein kinase by insulin and epidermal growth factor in 3T3-L1 adipocytes: a possible involvement of PI3-kinase in the activation of the MAP kinase by insulin. Diabetes 46, 735–741.

    Article  PubMed  CAS  Google Scholar 

  63. Li J., Yen C., Liaw D., et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  64. Steck P. A., Pershouse M. A., Jasser S. A., et al. (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362.

    Article  PubMed  CAS  Google Scholar 

  65. Myers M. P., Stolarov J. P., Eng C., Li J., Wang S. I., Wigler M. H., Parsons R., and Tonks N. K. (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA 94, 9052–9057.

    Article  PubMed  CAS  Google Scholar 

  66. Maehama T. and Dixon J. E. (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-triphosphate. J. Biol. Chem. 273, 13,375–13,378.

    Article  CAS  Google Scholar 

  67. Lachyankar M. B., Sultana N., Schonhoff C. M., et al. (2000) A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 20, 1404–1413.

    PubMed  CAS  Google Scholar 

  68. Gu J., Tamura M., and Yamada K. M. (1998) Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J. Cell. Biol. 143, 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  69. Finkbeiner S. and Greenberg M. E. (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity. Neuron 16, 233–236.

    Article  PubMed  CAS  Google Scholar 

  70. Agell N., Bachs O., Rocamora N., and Villalonga P. (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin. Cell. Signal. 14, 649–654.

    Article  PubMed  CAS  Google Scholar 

  71. Choe E. S. and Wang J. Q. (2001) Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neurosci. Lett. 313, 129–132.

    Article  PubMed  CAS  Google Scholar 

  72. Peavy R. D., Chang M. S., Sanders-Bush E., and Conn P. J. (2001) Metabotropic glutamate receptor 5-induced phosphorylation of extracellular signal-regulated kinase in astrocytes depends on transactivation of the epidermal growth factor receptor. J. Neurosci. 21, 9619–9628.

    PubMed  CAS  Google Scholar 

  73. Hazzalin C. A. and Mahadevan L. C. (2002) MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell. Biol. 3, 30–40.

    Article  PubMed  CAS  Google Scholar 

  74. Valjent E., Caboche J., and Vanhoutte P. (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol. Neurobiol. 23, 83–99.

    Article  PubMed  CAS  Google Scholar 

  75. Li R., Pei H., and Watson D. K. (2000) Regulation of Ets function by protein-protein interactions. Oncogene 19, 6514–6523.

    Article  PubMed  CAS  Google Scholar 

  76. Sharrocks A. D. (2001) The ETS-domain transcription factor family. Nat. Rev. Mol. Cell. Biol. 2, 827–837.

    Article  PubMed  CAS  Google Scholar 

  77. Yordy J. S. and Muise-Helmericks R. C. (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19, 6503–6513.

    Article  PubMed  CAS  Google Scholar 

  78. Hipskind R. A., Rao V. N., Mueller C. G. F., Reddy E. S. P., and Nordheim A. (1991) Etsrelated protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature 354, 531–534.

    Article  PubMed  CAS  Google Scholar 

  79. Dalton S. and Treisman R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum element. Cell 68, 597–612.

    Article  PubMed  CAS  Google Scholar 

  80. Giovane A., Pintzas A., Maira S. M., Sobieszczuk P., and Wasylyk B. (1994) Net, a new ets transcription factor that is activated by ras. Genes. Dev. 8, 1502–1513.

    Article  PubMed  CAS  Google Scholar 

  81. Lopez M., Oettgen P., Akbarali Y., Dendorfer U., and Liberman T. A. (1994) ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization and differential expression during B-cell development. Mol. Cell. Biol. 14, 3292–3309.

    PubMed  CAS  Google Scholar 

  82. Gille H., Sharrocks A. D., and Shaw P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promotor. Nature 358, 414–417.

    Article  PubMed  CAS  Google Scholar 

  83. Gille H., Kortenjann M., Thoma O., Moomaw C., Slaughter C., Cobb M., and Shaw P. E. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962.

    PubMed  CAS  Google Scholar 

  84. Mao L. and Wang J. Q. (2003) Metabotropic glutamate receptor subtype 5-regulated Elk-1 phosphorylation and immediate early gene expression in striatal neurons, J. Neurochem. 85, 1006–1017.

    Article  PubMed  CAS  Google Scholar 

  85. Valjent E., Corvol J. C., Pages C., Besson M. J., Maldonado R., and Caboche J. (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709.

    PubMed  CAS  Google Scholar 

  86. Choe E. S., Chung K. T., Mao L., and Wang J. Q. (2002) Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology 27, 565–575.

    PubMed  CAS  Google Scholar 

  87. Berhow M. T., Hiroi N., and Nestler E. J. (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707–4715.

    PubMed  CAS  Google Scholar 

  88. Freeman W. M., Nader M. A., Nader S. H., et al. (2001) Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J. Neurochem. 77, 542–549.

    Article  PubMed  CAS  Google Scholar 

  89. Choe E. S. and Wang J. Q. (2002) CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons. NeuroReport 13, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  90. Pierce R. C., Pierce-Bancroft A. F., and Prasad B. M. (1999) Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 8685–8695.

    PubMed  CAS  Google Scholar 

  91. Berke J. D. and Hyman S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532.

    Article  PubMed  CAS  Google Scholar 

  92. Berke J. D. (2003) Learning and memory mechanisms involved in compulsive drug use and relapse. Methods Mol. Med. 79, 75–101.

    PubMed  CAS  Google Scholar 

  93. Boening J. A. (2001) Neurobiology of an addiction memory. J. Neural. Transm. 108, 755–765.

    Article  PubMed  CAS  Google Scholar 

  94. Calabresi P., Saulle E., Centonze D., Pisani A., Marfia G. A., and Bernardi G. (2002) Postischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 125, 844–860.

    Article  PubMed  Google Scholar 

  95. Kahn L., Alonso G., Robbe D., Bockaert J., and Manzoni O. J. (2001) Group 2 metabotropic glutamate receptors induced long term depression in mouse striatal slices. Neurosci. Lett. 316, 178–182.

    Article  PubMed  CAS  Google Scholar 

  96. Mazzucchelli C., Vantaggiato C., Ciamei A., et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807–820.

    Article  PubMed  CAS  Google Scholar 

  97. English J. M. and Cobb M. H. (2002) Pharmacological inhibitors of MARK pathways. Trends in Pharmacol. Sci. 23, 40–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.Q., Tang, Q., Parelkar, N.K. et al. Glutamate signaling to ras-MAPK in striatal neurons. Mol Neurobiol 29, 1–14 (2004). https://doi.org/10.1385/MN:29:1:01

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:1:01

Index Entries

Navigation