Skip to main content
Log in

Post-Transplant Diabetes Mellitus

The Role of Immunosuppression

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Immunosuppressive agents increase the risk of death due to coronary disease or stroke by their ability to cause 3 different adverse effects: dyslipidaemia, hypertension and hyperglycaemia. Post-transplant diabetes mellitus has emerged as a major adverse effect of immunosuppressants. As recipients of organ transplants survive longer, the secondary complications of diabetes mellitus have assumed greater importance.

There is a need for a precise definition of post-transplant diabetes mellitus to facilitate inter-centre comparison and to study the natural history of post-transplant diabetes mellitus. We recommend broad criteria to define hyperglycaemia, as a fasting blood glucose level of >400 mg/dl at any point or >200 mg/dl for 2 weeks, or a need for insulin treatment for at least 2 weeks. We also recommend serial measurements of HbA1c.

Cyclosporin and tacrolimus cause post-transplant diabetes mellitus by a number of mechanisms, including decreased insulin secretion, increased insulin resistance or a direct toxic effect on the beta cell. For corticosteroids, the induction of insulin resistance seems to be the predominant factor. However, few studies have examined the mechanism of diabetogenicity at the molecular level. This may hold the key for pharmacological manipulation of current immunosuppressive regimens which may result in decreased metabolic complications.

Corticosteroid sparing regimens have been shown to reduce the metabolic complications of immunosuppressants including post-transplant diabetes mellitus. However, their use should be balanced against the increased incidence of transplant rejections.

Post-transplant diabetes mellitus may be organ-specific, irrespective of the immunosuppressant used. Tacrolimus causes a high incidence of post-transplant diabetes mellitus in recipients of kidney transplants (up to 20% in some reports); the diabetogenicity of cyclosporin-based regimens is comparable with that of tacrolimus-based regimens in recipients of liver transplants. A few clinical studies in which attempts were made to discontinue cyclosporin resulted in an unacceptable loss of the transplant. In the case of tacrolimus, complete withdrawal of immunosuppression may be possible in selected patients with liver transplants. However, post-transplant recipients who may benefit from this approach are difficult to identify.

In some early series, patients received doses of tacrolimus that were approximately 2 to 3 times higher than those currently used, which may have resulted in a higher incidence of post-transplant diabetes mellitus. More recently, it has been shown that tacrolimus was successful in salvaging whole pancreatic grafts which were maintained on cyclosporin. Tacrolimus-based immunosuppression as primary therapy was also used with remarkable success in solitary whole pancreas transplants.

Strategies to reduce the metabolic complications of immunosuppressants should be pursued aggressively as this will directly lead to a decrease in long term cardiovascular adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in IDDM. N Engl J Med 1993; 329: 977–86

    Google Scholar 

  2. American Diabetes Association. Position statement: implications of the Diabetes Control and Complications Trial. Clin Diabetes 1993; 11: 91–6

    Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group. The absence of a glycemic threshold for the development of long-term complications: the perspective of the diabetes control and complications trial. Diabetes 1996; 45: 1289–98

    Google Scholar 

  4. Gerstein H, Yusuf S. Dysglycaemia and risk of cardiovascular disease. Lancet 1996; 347: 949–50

    PubMed  CAS  Google Scholar 

  5. Jindal RM, Emre S, Meneses P, et al. Diabetogenicity of FK506 versus CyA in liver transplant recipients [abstract]. Hepatology 1993; 18: 745A

    Google Scholar 

  6. Jindal RM, Popsecu I, Schwartz ME, et al. Diabetogenicity of FK506 versus cyclosporine in liver transplant recipients. Transplantation 1994; 58: 370–2

    PubMed  CAS  Google Scholar 

  7. Jindal RM. Posttransplant diabetes mellitus — a review. Transplantation 1994; 58: 1289–98

    PubMed  CAS  Google Scholar 

  8. Steinmuller TM, Graf K-J, Schleicher J, et al. The effect of FK506 versus cyclosporine on glucose and lipid metabolism — a randomized trial. Transplantation 1994; 58: 669–74

    PubMed  CAS  Google Scholar 

  9. Peters AL, Davidson MB, Schriger DL, et al., for the Meta-Analysis Research Group on the Diagnosis of Diabetes using Glycated Hemoglobin Levels. An analysis using glycosylated hemoglobin levels. JAMA 1996; 276: 1246–52

    PubMed  CAS  Google Scholar 

  10. Krausz Y, Wollheim CB, Siegal E, et al. Possible role for calmodulin in insulin release: studies with trifluperazine in the rat pancreatic islets. J Clin Invest 1980; 66: 603–7

    PubMed  CAS  Google Scholar 

  11. Davis M. Immunosuppressive drugs. In: Neuberger J, Lucey MR, editors. Liver transplantation: practice and management. London: British Medical Association 1994: 190–209

    Google Scholar 

  12. Hirano Y, Hisatomi A, Ohara K, et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. Transplantation 1992; 54: 883–7

    PubMed  CAS  Google Scholar 

  13. Henke W, Jung K. Comparison of the effects of the immunosuppressive agents FK506 and cyclosporine A on rat kidney mitochondria. Biochem Pharmacol 1993; 46: 829–32

    PubMed  CAS  Google Scholar 

  14. Ueki M, Yasunami Y, Ina K, et al. Diabetogenic effects of FK506 on renal subcapsular islet isografts in rats. Diabetes Res Clin Pract 1993; 20: 11–9

    PubMed  CAS  Google Scholar 

  15. Herold KC, Nagamatsu S, Buse JB, et al. Inhibition of glucose-stimulated insulin release from BTC3 cells and rodent islets by an analog of FK506. Transplantation 1993; 55: 186–92

    PubMed  CAS  Google Scholar 

  16. Ost L. Effects of cyclosporine on prednisolone metabolism. Lancet 1984; I: 451

    Google Scholar 

  17. Jindal RM, Hughes D, Pescovitz MD, et al. Association of HLA antigens with posttransplant diabetes mellitus in recipients of liver transplants [abstract]. Hepatology 1995; 22: 434A

    Google Scholar 

  18. David SS, Cheigh JS, Brown Jr DW, et al. HLA-A28 and steroid induced diabetes in renal transplant patients. JAMA 1980; 243: 532–3

    PubMed  CAS  Google Scholar 

  19. D’Apice AJF, Mathews JD, Tait BD, et al. Association of HLA antigens with glucose tolerance following renal transplantation. Tissue Antigens 1978; 11: 423–6

    PubMed  Google Scholar 

  20. Rizza MA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J Clin Endocrinol Metab 1982; 54: 131–8

    PubMed  CAS  Google Scholar 

  21. Munch A. Glucocorticoid inhibition of glucose uptake by peripheral tissues: old and new evidence, molecular mechanisms and physiological significance. Perspect Biol Med 1971; 14: 265–89

    Google Scholar 

  22. Kahn CR, Goldfine ID, Neville DM, et al. Alteration in insulin binding induced by changes in vivo in the levels of glucocorticoids and growth hormone. Endocrinology 1978; 103: 1054–66

    PubMed  CAS  Google Scholar 

  23. Venkatesan N, Davidson MB, Huchinson A. Possible role for the glucose-fatty acid cycle in dexamethasone-induced insulin antagonism in rats. Metabolism 1987; 36: 883–91

    PubMed  CAS  Google Scholar 

  24. Ekstrand AV, Eriksson JG, Gronhagen-Riska C, et al. Insulin resistance and insulin deficiency in the pathogenesis of posttransplant diabetes in man. Transplantation 1992; 53: 563–9

    PubMed  CAS  Google Scholar 

  25. Zimmerman T, Horber F, Roderiguez N, et al. Contribution of insulin resistance to catabolic effect of prednisone on leucine metabolism in humans. Diabetes 1989; 38: 1238–44

    PubMed  CAS  Google Scholar 

  26. Hahn HJ, Laube F, Lucke S, et al. Toxic effects of cyclosporine on the endocrine pancreas of Wistar rats. Transplantation 1986; 41: 44–7

    PubMed  CAS  Google Scholar 

  27. Hahn HJ, Dunger A, Laube F, et al. Reversibility of the acute effect of cyclosporine A on pancreatic B cells of Wistar rats. Diabetologia 1986; 29: 489–94

    PubMed  CAS  Google Scholar 

  28. Andersson A, Borg H, Hallberg A, et al. Long-term effects of cyclosporin A on cultured mouse pancreatic islets. Diabetologia 1984; 27: 66–9

    PubMed  CAS  Google Scholar 

  29. Gillison SL, Bartlett ST, Curry DL. Inhibition by cyclosporine of insulin secretion — a beta cell-specific alteration of islet tissue function. Transplantation 1991; 52: 890–5

    PubMed  CAS  Google Scholar 

  30. Eun HM, Pak CY, Kim CJ, et al. Role of cyclosporine A in macromolecular synthesis of beta-cells. Diabetes 1987; 36: 952–8

    PubMed  CAS  Google Scholar 

  31. Robertson RP. Cyclosporine-induced inhibition of insulin secretion in isolated rat islets and HIT cells. Diabetes 1986; 35: 1016–9

    PubMed  CAS  Google Scholar 

  32. Wahlstrom HE, Akimoto R, Endres D, et al. Recovery and hypersecretion of insulin and reversal of insulin resistance after withdrawal of short-term cyclosporine treatment. Transplantation 1992; 53: 1190–5

    PubMed  CAS  Google Scholar 

  33. Alejandro R, Feldman E, Bloom AD, et al. Effect of cyclosporine on insulin and C-peptide secretion in healthy beagles. Diabetes 1989; 38: 698–703

    PubMed  CAS  Google Scholar 

  34. Stegall MD, Chabot J, Weber C, et al. Pancreatic islet transplantation in cynomolgus monkeys. Transplantation 1989; 48: 944–50

    PubMed  CAS  Google Scholar 

  35. Ishizuka J, Gugliuzza KK, Wassmuth Z, et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islets. Transplantation 1993; 56: 1486–90

    PubMed  CAS  Google Scholar 

  36. Schilfgaarde van RV, Burg van der MPM, Suylichem van PTR, et al. Reversible suppression of canine beta cell function by cyclosporine A is dose dependent. Transplant Proc 1986; 18: 1556–7

    Google Scholar 

  37. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective randomized trial of FK506-based immunosuppression after renal transplantation. Transplantation 1995; 59: 485–90

    PubMed  CAS  Google Scholar 

  38. Tamura K, Fujimura T, Tsutsumi T, et al. Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic B-cell. Transplantation 1995; 59: 1606–13

    PubMed  CAS  Google Scholar 

  39. Hirano Y, Mitamura T, Tamura T, et al. Mechanism of FK506 induced glucose intolerance in rats. J Toxicol Sci 1994; 19: 61–5

    PubMed  CAS  Google Scholar 

  40. Hirano Y, Fujihira S, Ohara K, et al. Morphological and functional changes of islets of Langerhans in FK506-treated rats. Transplantation 1992; 53: 889–94

    PubMed  CAS  Google Scholar 

  41. Tze WJ, Tai J, Murase N, et al. Effect of FK506 on glucose metabolism and insulin secretion in normal rats. Transplant Proc 1991; 23: 3158–60

    PubMed  CAS  Google Scholar 

  42. Rilo HLR, Zeng Y, Alejandro R, et al. Effect of FK506 on function of human islets of Langerhans. Transplant Proc 1991; 23: 3164–5

    PubMed  CAS  Google Scholar 

  43. Strasser S, Alejandro R, Shapiro TE, et al. Effect of FK506 on insulin secretion in normal dogs. Metabolism 1992; 41: 64–7

    PubMed  CAS  Google Scholar 

  44. Collier DSU, Calne R, Thiru S, et al. FK506 in experimental renal allografts. Transplant Proc 1987; 19: 3975–7

    PubMed  CAS  Google Scholar 

  45. Todo S, Demetris A, Ueda Y, et al. Renal transplantation in baboons under FK506. Surgery 1989; 106: 444–51

    PubMed  CAS  Google Scholar 

  46. Ericzon B-G, Wijnen RMH, Kubota K, et al. FK506-induced impairment of glucose metabolism in the primate — studies in pancreatic transplant recipients and in nontransplanted animals. Transplantation 1992; 54: 615–20

    PubMed  CAS  Google Scholar 

  47. Jindal RM, Tepper MA, Soltys K, et al. Deoxyspergualin — a novel immunosuppressant. Mt Sinai J Med 1994; 61: 51–6

    PubMed  CAS  Google Scholar 

  48. Menger MD, Jager S, Walter P, et al. The influence of ± 15-deoxyspergualin on revascularization of xenogeneic transplanted islets of Langerhans. Transplant Proc 1990; 22: 1631–2

    PubMed  CAS  Google Scholar 

  49. Strandeil E, Anderson A, Groth CG, et al. Effects of 15-deoxyspergualin on pancreatic islet B-cell function in vitro and on the development of diabetes after multiple low dose streptozotocin administration. Pharmacol Toxicol 1989; 65: 114–8

    Google Scholar 

  50. Jindal RM, Soltys K, Yost F, et al. Transplantation of pig pancreatic islets to rat using deoxyspergualin monotherapy. Transplant Proc 1994; 26: 1108–9

    PubMed  CAS  Google Scholar 

  51. Jindal RM, Soltys K, Yost F, et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. Transplantation 1993; 56: 1275–7

    PubMed  CAS  Google Scholar 

  52. Xenos ES, Casanova D, Sutherland DER, et al. The in vivo and in vitro effect of 15-deoxyspergualin on pancreatic islet function. Transplantation 1993; 56: 144–7

    PubMed  CAS  Google Scholar 

  53. Kahan BD, Chang JY, Sehgal S. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin. Transplantation 1991; 52: 185–91

    PubMed  CAS  Google Scholar 

  54. Fabian MC, Lakey JRT, Rajotte RV, et al. The efficacy and toxicity of rapamycin in murine islet transplantation. Transplantation 1993; 56: 1137–42

    PubMed  CAS  Google Scholar 

  55. Andoh TF, Lindsley J, Franceschini N, et al. Synergistic effects of cyclosporine and rapamycin in a chronic nephrotoxicity model. Transplantation 1996; 62: 311–6

    PubMed  CAS  Google Scholar 

  56. Sharma K, Ziyadeh FN. Hyperglycaemia and diabetic kidney disease: the case for transforming growth factor-beta as a key mediator. Diabetes 1995; 44: 1139–46

    PubMed  CAS  Google Scholar 

  57. Kneteman NM, Lakey JRT, Wagner T, et al. Beneficial metabolic impact of the novel immunosuppressant rapamycin in chronic canine islet autograft recipients. Transplant Proc 1995; 27: 3213

    PubMed  CAS  Google Scholar 

  58. Kneteman NM, Lakey JRT, Wagner T, et al. The metabolic impact of rapamycin (sirolimus) in chronic islet graft function. Transplantation 1996; 61: 1206–10

    PubMed  CAS  Google Scholar 

  59. Anderson S, Rennke HG, Garcia DL, et al. Short- and long-term effects of antihypertensive therapy in the diabetic rat. Kidney Int 1989; 36: 526–36

    PubMed  CAS  Google Scholar 

  60. DiJoseph JF, Sharma RN, Chang JY. The effects of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 1992; 53: 507–13

    PubMed  CAS  Google Scholar 

  61. Platz KP, Sollinger HW, Hullet DA, et al. RS-61443 — a new, potent immunosuppressive agent. Transplantation 1991; 51: 27–31

    PubMed  CAS  Google Scholar 

  62. Hao L, Lafferty KJ, Allison AC, et al. RS-61443 allows islet allografting and specific tolerance induction in adult mice. Transplant Proc 1990; 22: 876–9

    PubMed  CAS  Google Scholar 

  63. Hao L, Calcinaro F, Gill RG, et al. Facilitation of specific tolerance induction in adult mice by RS-61443. Transplantation 1992; 53: 590–5

    PubMed  CAS  Google Scholar 

  64. McGeown MG, Douglas JF, Brown WA, et al. Advantages of low dose steroid from the day after renal transplantation. Transplantation 1980; 29: 287–9

    PubMed  CAS  Google Scholar 

  65. Hill CM, Rajkumar KV, Douglas JF, et al. Glycosuria and hyperglycaemia after kidney transplantation. Lancet 1974; II: 490–2

    Google Scholar 

  66. Lampe EW, Ruiz JO, Simmons RL, et al. Hyperglycaemic nonketotic coma after renal transplantation. Am J Surg 1974; 127: 342–4

    PubMed  Google Scholar 

  67. Arner P, Gunnarsson R, Blomdahl S, et al. Some characteristics of steroid diabetes: a study in renal transplant recipients receiving high dose corticosteroid therapy. Diabetes Care 1983; 6: 23–5

    PubMed  CAS  Google Scholar 

  68. Gunnarsson R, Klintmalm G, Lundgren G, et al. Deterioration in glucose metabolism in pancreatic transplant recipients after conversion from azathioprine to cyclosporine. Transplant Proc 1984; 16: 709–12

    PubMed  CAS  Google Scholar 

  69. Tyden G, Brattstrom C, Gunnarsson R, et al. Metabolic control at 2 months to 4.5 years after pancreatic transplantation, with special reference to the role of cyclosporine. Transplant Proc 1987; 19: 2294–6

    PubMed  CAS  Google Scholar 

  70. Ried M, Gibbons S, Kwok D, et al. Cyclosporine levels in human tissues of patients treated for one week to one year. Transplant Proc 1983; 15: 2434–7

    Google Scholar 

  71. Friedman EA, Shyh TP, Beyer MM, et al. Posttransplant diabetes in kidney transplant recipients. Am J Nephrol 1985; 5: 196–202

    PubMed  CAS  Google Scholar 

  72. Boudreaux JP, McHugh L, Canafax DM, et al. The impact of cyclosporine and combination immunosuppression on the incidence of posttransplant diabetes in renal allograft recipients. Transplantation 1987; 44: 376–81

    PubMed  CAS  Google Scholar 

  73. Yoshimura N, Nakai I, Ohmori Y, et al. Effect of cyclosporine on the endocrine and exocrine pancreas in kidney transplant recipients. Am J Kidney Dis 1988; 12: 11–7

    PubMed  CAS  Google Scholar 

  74. Nakai I, Omori Y, Aikawa I, et al. Effect of cyclosporine on glucose metabolism in kidney transplant patients. Transplant Proc 1988; 20: 969–78

    PubMed  CAS  Google Scholar 

  75. Sumrani NB, Delaney V, Ding Z, et al. Diabetes mellitus after renal transplantation in the cyclosporine era — an analysis of risk factors. Transplantation 1991; 51: 343–7

    PubMed  CAS  Google Scholar 

  76. Vesco L, Busson M, Bedrossian J, et al. Diabetes mellitus after renal transplantation: characteristics, outcome, and risk factors. Transplantation 1996; 61: 1475–8

    PubMed  CAS  Google Scholar 

  77. Scantlebury V, Shapiro R, Fung J, et al. New Onset of diabetes in FK506 vs cyclosporine-treated kidney transplant recipients. Transplant Proc 1991; 23: 3169–70

    PubMed  CAS  Google Scholar 

  78. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective randomized trial of FK506-based immunosuppression after renal transplantation. Transplantation 1995; 59: 485–90

    PubMed  CAS  Google Scholar 

  79. Vincenti F, Laskow DA, Neylan JF, et al. One-year follow-up of an open-label trial of FK506 for primary kidney transplantation. Transplantation 1996; 61: 1576–81

    PubMed  CAS  Google Scholar 

  80. Woodle ES, Thistlethwaite JR, Gordon JH, et al. A multicenter trial of FK506 (tacrolimus) therapy in refractory acute renal allograft rejection. Transplantation 1996; 62: 594–9

    PubMed  CAS  Google Scholar 

  81. US multicenter FK506 liver study group. Use of Prograf (FK506) as rescue therapy for refractory rejection after liver transplantation. Transplant Proc 1993; 25: 679–88

    Google Scholar 

  82. Alessiani M, Cillo U, Fung JJ, et al. Adverse effects of FK506 overdosage after liver transplantation. Transplant Proc 1993; 25: 628–34

    PubMed  CAS  Google Scholar 

  83. Armitage JM, Kormos RL, Fung J, et al. The clinical trial of FK506 as a primary and rescue immunosuppression in adult cardiac transplantation. Transplant Proc 1991; 23: 3054–7

    PubMed  CAS  Google Scholar 

  84. Sollinger for the U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–32

    Google Scholar 

  85. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for the prevention of acute rejection. Lancet 1995; 345: 1321–5

    Google Scholar 

  86. Laskow DA, Deierhoi MH, Hudson SL, et al. The incidence of subsequent acute rejection following the treatment of refractory renal allograft rejection with mycophenolate mofetil (RS 61443). Transplantation 1994; 57: 640–3

    PubMed  CAS  Google Scholar 

  87. Gores P, Najarian JS, Stephanian E, et al. Insulin independence in type 1 diabetes after transplantation of unpurified islets from single donor with 15-deoxyspergualin. Lancet 1993; 341: 19–21

    PubMed  CAS  Google Scholar 

  88. Jindal RM, Popescu I, Emre S, et al. Serum lipid changes in liver transplant recipients in a prospective trial of cyclosporine versus FK506. Transplantation 1994; 57: 1396–8

    Google Scholar 

  89. Fabrega AJ, Mesler P, Cohan J, et al. Long-term (24 month) follow-up of steroid withdrawal in renal allograft recipients with posttransplant diabetes mellitus. Transplantation 1995; 60: 1612–4

    PubMed  CAS  Google Scholar 

  90. McDiarmid SV, Farmer DA, Goldstein LI, et al. A randomized prospective trial of steroid withdrawal after liver transplantation. Transplantation 1995; 60: 1443–50

    PubMed  CAS  Google Scholar 

  91. Miller LW, Wolford T, McBride LR, et al. Successful withdrawal of corticosteroids in heart transplantation. J Heart Lung Transplant 1992; 11: 431–4

    PubMed  CAS  Google Scholar 

  92. Sinclair NRS, for the Canadian Multicenter Transplant Study Group. Low-dose steroid therapy in cyclosporine-treated renal transplant recipients with a well-functioning graft. Can Med Assoc J 1992; 147: 645–57

    CAS  Google Scholar 

  93. Reisman L, Lieberman KV, Burrows L, et al. Follow-up of cyclosporine-treated pediatric renal allograft recipients after cessation of prednisone. Transplantation 1990; 49: 76–80

    PubMed  CAS  Google Scholar 

  94. Hricik DE, Almawi WY, Strom TB. Trends in the use of glucocorticoids in renal transplantation. Transplantation 1994; 57: 979–89

    PubMed  CAS  Google Scholar 

  95. Ratcliffe PJ, Dudley CRK, Higgins RM, et al. Randomized controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet 1996; 348: 643–8

    PubMed  CAS  Google Scholar 

  96. Cantarovich D, Dantal J, Murat A, et al. Normal glucose metabolism and insulin secretion in CyA-treated nondiabetic renal allograft patients not receiving steroids. Transplant Proc 1990; 22: 643–4

    PubMed  CAS  Google Scholar 

  97. Hricik DE, Bartucci MR, Moir EJ, et al. Effects of steroid withdrawal on posttransplant diabetes mellitus in cyclosporinetreated renal transplant recipients. Transplantation 1991; 51: 374–7

    PubMed  CAS  Google Scholar 

  98. Jordan ML, Shapiro R, Vivas CA, et al. FK506 ‘rescue’ for resistant rejection of renal allografts under primary cyclosporine immunosuppression. Transplantation 1994; 57: 860–5

    PubMed  CAS  Google Scholar 

  99. Ramos HC, Reyes J, Abu-Elmagd K, et al. Weaning of immunosuppression in long-term liver transplant recipients. Transplantation 1995; 59: 212–7

    PubMed  CAS  Google Scholar 

  100. Thomson AW, Lu L, Murase N, et al. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 1995; 13: 622–39

    PubMed  CAS  Google Scholar 

  101. European FK506 multicenter liver study group. Randomized trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. Lancet 1994; 344: 423–8

    Google Scholar 

  102. The US multicenter FK506 liver study group. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 1994; 331: 1110–5

    Google Scholar 

  103. Fung J, Abu-Elmagd K, Jain A, et al. A randomized trial of primary liver transplantation under immunosuppression with FK506 vs cyclosporine. Transplant Proc 1991; 23: 2977–83

    PubMed  CAS  Google Scholar 

  104. Mieles L, Gordon RD, Mintz D, et al. Glycemia and insulin need following FK506 rescue therapy in liver transplant recipients. Transplant Proc 1991; 23: 949–53

    PubMed  CAS  Google Scholar 

  105. Krentz AJ, Dousset B, Mayer D, et al. Metabolic effects of cyclosporine A and FK506 in liver transplant recipients. Diabetes 1993; 42: 1753–9

    PubMed  CAS  Google Scholar 

  106. Mor E, Sheiner PA, Schwartz ME, et al. Reversal of severe FK506 side effects by conversion to cyclosporine-based immunosuppression. Transplantation 1994; 58: 380–2

    PubMed  CAS  Google Scholar 

  107. Kai N, Motojima K, Tsunoda T, et al. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. Transplantation 1993; 55: 936–40

    PubMed  CAS  Google Scholar 

  108. Murase N, Lieberman I, Nalesnik MA, et al. Effect of FK506 on spontaneous diabetes in BB rats. Diabetes 1990; 39: 1584–6

    PubMed  CAS  Google Scholar 

  109. Hariharan S, Munda R, Cavallo T, et al. Rescue therapy with tacrolimus after combined kidney/pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. Transplantation 1996; 61: 1161–5

    PubMed  CAS  Google Scholar 

  110. Bartlett ST, Schweitzer E, Johnson LB, et al. Equivalent success of simultaneous pancreas kidney and solitary pancreas transplantation: a prospective trial of tacrolimus immunosuppression with percutaneous biopsy. Ann Surg 1996; 224: 440–52

    PubMed  CAS  Google Scholar 

  111. Gruessner RWG, Burke GW, Stratta R, et al. A multicenter analysis of the first experience with FK506 for the induction and rescue therapy after pancreas transplantation. Transplantation 1996; 61: 261–73

    PubMed  CAS  Google Scholar 

  112. Jindal RM, Sahota A. The role of cell migration and microchimerism in the induction of tolerance after solid organ transplantation. Postgrad Med J. In press

  113. Starzl TE, Demetris AJ, Trucco M, et al. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology 1993; 17: 1127–52

    PubMed  CAS  Google Scholar 

  114. Onwubalili JK, Obineche EN. High incidence of post-transplant diabetes mellitus in a single-center study. Nephrol Dial Transplant 1992; 7: 346–9

    PubMed  CAS  Google Scholar 

  115. Rao M, Jacob CK, Shastry JCM. Post-transplant diabetes mellitus-a retrospective study. Nephrol Dial Transplant 1992; 7: 1039–42

    PubMed  CAS  Google Scholar 

  116. Dumler F, Hayashi H, Hunter J, et al. Racial differences in the incidence of steroid diabetes in renal transplant patients. Henry Ford Hosp Med J 1982; 30: 14–6

    PubMed  CAS  Google Scholar 

  117. Tornatore KM, Reed K, Venuto RC. Racial differences in the pharmacokinetics of methylprednisolone in black and white transplant recipients. Pharmacokinetics 1993; 13: 481–6

    CAS  Google Scholar 

  118. Tornatore KM, Biocevich DM, Reed KA, et al. Post-transplant diabetes mellitus and methylprednisolone pharmacokinetics in African-American and Caucasian renal transplant recipients. Clin Transplant 1995; 9: 289–96

    PubMed  CAS  Google Scholar 

  119. Isoniemi HM, Ahonen J, Tikkanen MJ, et al. Long term consequences of different immunosuppressive regimens for renal allografts. Transplantation 1993; 55: 494–9

    PubMed  CAS  Google Scholar 

  120. Kaisiske BL, Neylan JF, Riggio RR, et al. The effects of race on access and outcome in transplantation. N Engl J Med 1991; 324: 302–7

    Google Scholar 

  121. Butkus DE, Meydrech EF, Raju SS. Racial differences in the survival of cadaveric renal allografts; overriding effects of HLA matching and socioeconomic factors. N Engl J Med 1992; 327: 840–5

    PubMed  CAS  Google Scholar 

  122. Ahn KJ, Kim YS, Lee HC, et al. Clinical characteristics and possible risk factors in postrenal transplant diabetes mellitus. Transplant Proc 1992; 24: 1581–2

    PubMed  CAS  Google Scholar 

  123. Stegall MD, Everson GT, Schroter G, et al. Prednisone withdrawal late after adult liver transplantation reduces diabetes, hypertension, and hypercholesterolemia without causing graft loss. Hepatology 1997; 25: 173–7

    PubMed  CAS  Google Scholar 

  124. Canzanello VJ, Schwartz L, Taler SJ, et al. Evolution of cardiovascular risk after liver transplantation: a comparison of cyclosporine A and Tacrolimus (FK506). Liver Transplant Surg 1997; 3: 1–9

    CAS  Google Scholar 

  125. Feinstein EI, Wannr C, Bohler J, et al. Endocrine and metabolic disorders following kidney transplantation. Am J Nephrol 1992; 12: 363–8

    PubMed  CAS  Google Scholar 

  126. Hricik DE, Schulak JA. Metabolic effects of steroid withdrawal in adult renal transplant recipients. Kidney Int 1993; 44Suppl. 43: 26–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul M. Jindal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jindal, R.M., Sidner, R.A. & Milgrom, M.L. Post-Transplant Diabetes Mellitus. Drug-Safety 16, 242–257 (1997). https://doi.org/10.2165/00002018-199716040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199716040-00002

Keywords

Navigation