Skip to main content
Log in

Bone as an Effect Compartment

Models for Uptake and Release of Drugs

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

‘Bone-seeking agents’ are drugs characterised by high affinity for bone, and are disposed in bone for prolonged periods of time while maintaining remarkably low systemic concentrations. As a consequence, the bone becomes a reservoir for bone-seeking agents, and a site of both desirable and adverse effects, depending on the pharmacological activities of the specific agent. For some agents, significant systemic effects may also be produced following their prolonged release from bone, a process that is governed mostly by the rate of bone remodelling.

This review covers the pharmacokinetic and pharmacodynamic features of bone-seeking agents with different pharmacological properties, including drugs (bisphosphonates, drug-bisphosphonate conjugates, radiopharmaceuticals and fluoride), bone markers (tetracycline, bone imaging agents) and toxins (lead, chromium, aluminium). In addition, drugs that do not possess bone-seeking properties but are used for therapy of bone diseases (such as antibacterials for treatment of osteomyelitis) are discussed, along with targeting of these drugs to the bone by conjugation to bone-seeking agents, local delivery systems, and other approaches.

The pharmacokinetic and pharmacodynamic behaviour of bone-seeking agents is extremely complex due to heterogeneity in bone morphology and physiology. This complexity, accompanied by difficulties in human bone research caused by ethical and other limitations, gave rise to modelling approaches to study bone drug disposition. This review describes the pharmacokinetic models that have been proposed to describe the pharmacokinetic behaviour of bone-seeking agents and predict bone concentrations of these agents for different doses and patient populations. Models of different types (compartmental and physiologically based) and of different complexity have been applied, but their relevance to drug effects in the bone tissue is limited since they describe the behaviour of the ‘average’ drug molecule. Understanding of the cellular and molecular processes responsible for the heterogeneity of bone tissue will provide better comprehension of the influence of microenvironment on drug bone disposition and the resulting pharmacological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table II

Similar content being viewed by others

References

  1. Eriksen EF, Vesterby A, Kassem M, et al. Bone remodeling and bone structure. In: Mundy GR, Martin TJ, editors. Physiology and pharmacology of bone. Heidelberg: Springer-Verlag, 1993

    Google Scholar 

  2. Ganong WF. Review of medical physiology. 16th ed. London: Prentice-Hall International Inc., 1993

    Google Scholar 

  3. McGowan JA. Bone: target and source of environmental pollutant exposure. Otolaryngol Head Neck Surg 1996; 114(2): 220–3

    PubMed  CAS  Google Scholar 

  4. Silbergeld EK, Sauk J, Somerman M, et al. Lead in bone: storage site, exposure source, and target organ. Neurotoxicology 1993; 14(2-3): 225–36

    PubMed  CAS  Google Scholar 

  5. Hoffman A, Stepensky D. Pharmacodynamic aspects of modes of drug administration for optimization of drug therapy. Crit Rev Ther Drug Carrier Syst 1999; 16(6): 571–639

    PubMed  CAS  Google Scholar 

  6. Boxenbaum H. Pharmacokinetics: philosophy of modeling. Drug Metab Rev 1992; 24(1): 89–120

    PubMed  CAS  Google Scholar 

  7. Levy G. Mechanism-based pharmacodynamic modeling. Clin-Pharmacol Ther 1994; 56(4): 356–8

    PubMed  CAS  Google Scholar 

  8. Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 1997; 35(10): 401–13

    PubMed  CAS  Google Scholar 

  9. Gieschke R, Steimer JL. Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokinet 2000; 25(1): 49–58

    PubMed  CAS  Google Scholar 

  10. Mather LE. Anatomical-physiological approaches in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 2001; 40(10): 707–22

    PubMed  CAS  Google Scholar 

  11. Leggett RW. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect 1993; 101(7): 598–616

    PubMed  CAS  Google Scholar 

  12. Lin J. Bisphosphonates: a review of their pharmacokinetic properties. Bone 1996; 18(2): 75–85

    PubMed  CAS  Google Scholar 

  13. Hoffman A, Stepensky D, Ezra A, et al. Mode of administration-dependent pharmacokinetics of bisphosphonates and bioavailability determination. Int J Pharm 2001; 220(1–2): 1–11

    PubMed  CAS  Google Scholar 

  14. Monkkonen J, Ylitalo P. The tissue distribution of clodronate (dichloromethylene bisphosphonate) in mice: the effects of vehicle and the route of administration. Eur J Drug Metab Pharmacokinet 1990; 15(3): 239–43

    PubMed  CAS  Google Scholar 

  15. Fujisaki J, Tokunaga Y, Sawamoto T, et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug: III. pharmacokinetics and targeting characteristics of osteotropic carboxyfluorescein. J Drug Target 1996; 4(2): 117–23

    PubMed  CAS  Google Scholar 

  16. Fujisaki J, Tokunaga Y, Takahashi T, et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug: V. biological disposition and targeting characteristics of osteotropic estradiol. Biol Pharm Bull 1997; 20(11): 1183–7

    PubMed  CAS  Google Scholar 

  17. Wingen F, Sterz H, Blum H, et al. Synthesis, antitumor activity, distribution and toxicity of 4-[4-[bis(2-chloroethyl)amino]phenyl]-1-hydroxybutane-1 1-bisphosphonic acid (BAD), a new lost derivative with increased accumulation in rat osteosarcoma. J Cancer Res Clin Oncol 1986; 111(3): 209–19

    PubMed  CAS  Google Scholar 

  18. Hirabayashi H, Takahashi T, Fujisaki J, et al. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the Osteotropic Drug Delivery System (ODDS). J Control Release 2001; 70(1–2): 183–91

    PubMed  CAS  Google Scholar 

  19. Lewington VJ. Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 1993; 20(1): 66–74

    PubMed  CAS  Google Scholar 

  20. Ackery D, Yardley J. Radionuclide-targeted therapy for the management of metastatic bone pain. Semin Oncol 1993; 20 (3 Suppl. 2): 27–31

    PubMed  CAS  Google Scholar 

  21. Brenner W, Kampen WU, Kampen AM, et al. Skeletal uptake and soft-tissue retention of 186Re-HEDP and 153Sm-EDTMP in patients with metastatic bone disease. J Nucl Med 2001; 42(2): 230–6

    PubMed  CAS  Google Scholar 

  22. Blake GM, Park Holohan SJ, Cook GJ, et al. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001; 31(1): 28–49

    PubMed  CAS  Google Scholar 

  23. Carnevale V, Dicembrino F, Frusciante V, et al. Different patterns of global and regional skeletal uptake of 99mTcmethylene diphosphonate with age: relevance to the pathogenesis of bone loss. J Nucl Med 2000; 41(9): 1478–83

    PubMed  CAS  Google Scholar 

  24. Arend SM, Pauwels EK, Arndt JW, et al. Extraskeletal localization of 99mTc-labeled bone-seeking tracers in bone scintigraphy. Neth J Med 1994; 45(4): 177–91

    PubMed  CAS  Google Scholar 

  25. Os’Flaherty EJ. Physiologically based models for bone-seeking elements: IV. kinetics of lead disposition in humans. Toxicol Appl Pharmacol 1993; 118(1): 16–29

    Google Scholar 

  26. Os’Flaherty EJ. Physiologically based models for bone-seeking elements: II. kinetics of lead disposition in rats. Toxicol Appl Pharmacol 1991; 111(2): 313–31

    Google Scholar 

  27. Landrigan PJ. Strategies for epidemiologic studies of lead in bone in occupationally exposed populations. Environ Health Perspect 1991; 91: 81–6

    PubMed  CAS  Google Scholar 

  28. Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect 1991; 91: 33–7

    PubMed  CAS  Google Scholar 

  29. Kelly R, Buyske D. Metabolism of tetracycline in the rat and in the dog. J Pharm Exp Ther 1960; 130: 144–9

    CAS  Google Scholar 

  30. Buyske D, Eisner H, Kelly R. Concentration and persistence of tetracycline and chlortetracycline in bone. J Pharm Exper Ther 1960; 130: 150–6

    CAS  Google Scholar 

  31. Blomquist L, Hanngren A. Whole body autoradiography and fluorography of two tetracycline compounds in tumor-bearing mice. Acta Med Scand 1968; 184: 1–11

    PubMed  CAS  Google Scholar 

  32. Ekstrand J, Spak CJ. Fluoride pharmacokinetics: its implications in the fluoride treatment of osteoporosis. J Bone Miner Res 1990; 5 Suppl. 1: s53–61

    PubMed  Google Scholar 

  33. Whitford GM. Intake and metabolism of fluoride. Adv Dent Res 1994; 8(1): 5–14

    PubMed  CAS  Google Scholar 

  34. Turner CH, Boivin G, Meunier PJ. A mathematical model for fluoride uptake by the skeleton. Calcif Tissue Int 1993; 52(2): 130–8

    PubMed  CAS  Google Scholar 

  35. Bonjour J-P, Rizzoli R, Ammann P, et al. Bisphosphonates in clinical medicine. In: Heersche JNM, Kanis JA, editors. Bone and mineral research. Amsterdam: Elsevier, 1994: 205–64

    Google Scholar 

  36. Rosen C, Kessenich C. Comparative clinical pharmacology and therapeutic use of bisphosphonates in metabolic bone disease. Drugs 1996; 51(4): 537–51

    PubMed  CAS  Google Scholar 

  37. Rodan GA. Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 1998; 38: 375–88

    PubMed  CAS  Google Scholar 

  38. van Beek E, Pieterman E, Cohen L, et al. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 1999; 264(1): 108–11

    PubMed  Google Scholar 

  39. Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999; 25(1): 97–106

    PubMed  CAS  Google Scholar 

  40. Halasy Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone 2001; 29(6): 553–9

    PubMed  CAS  Google Scholar 

  41. Lin JH, Lu A. Role of pharmacokinetics and metabolism in drug discovery and development. Pharm Rev 1997; 49(4): 403–49

    PubMed  CAS  Google Scholar 

  42. Fleisch H. Bisphosphonates in bone disease: from the laboratory to the patient. 3rd ed. Berne: The Parthenon Publishing Group, 1997

    Google Scholar 

  43. Azuma Y, Sato H, Oue Y, et al. Alendronate distributed on bone surfaces inhibits osteoclastic bone resorption in vitro and in experimental hypercalcemia models. Bone 1995; 16(2): 235–45

    PubMed  CAS  Google Scholar 

  44. Osterman T, Virtamo T, Kippo K, et al. Distribution of clodronate in the bone of adult rats and its effects on trabecular and cortical bone. J Pharmacol Exp Ther 1997; 280(2): 1051–6

    PubMed  CAS  Google Scholar 

  45. Sato M, Grasser W, Endo N, et al. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991; 88(6): 2095–105

    PubMed  CAS  Google Scholar 

  46. Lin JH, Chen IW, Duggan DE. Effects of dose, sex, and age on the disposition of alendronate, a potent antiosteolytic bisphosphonate, in rats. Drug Metab Dispos 1992; 20(4): 473–8

    PubMed  CAS  Google Scholar 

  47. Masarachia P, Weinreb M, Balena R, et al. Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 1996; 19(3): 281–90

    PubMed  CAS  Google Scholar 

  48. Ezra A, Hoffman A, Breuer E, et al. A peptide prodrug approach for improving bisphosphonate oral absorption. J Med Chem 2000; 43(20): 3641–52

    PubMed  CAS  Google Scholar 

  49. Pongchaidecha M, Daley Yates PT. Clearance and tissue uptake following 4-hour and 24-hour infusions of pamidronate in rats. Drug Metab Dispos 1993; 21(1): 100–4

    PubMed  CAS  Google Scholar 

  50. Lin JH, Chen IW, Deluna FA. Uptake of alendronate by bone tissue in hypocalcemic and hypercalcemic rats. Drug Metab Dispos 1993; 21(5): 800–4

    PubMed  CAS  Google Scholar 

  51. Lin JH, Chen I-W, Deluna FA. Nonlinear kinetics of alendronate: plasma protein binding and bone uptake. Drug Metab Dispos 1994; 22: 400–5

    PubMed  CAS  Google Scholar 

  52. Hoggarth CR, Bennett R, Daley Yates PT. The pharmacokinetics and distribution of pamidronate for a range of doses in the mouse. Calcif Tissue Int 1991; 49(6): 416–20

    PubMed  CAS  Google Scholar 

  53. Canniggia A, Vattimo A. Kinetics of technetium-99m-trimethylene-diphosphonate in normal subjects and pathological conditions: a simple index of bone metabolism. Calcif Tissue Int 1980; 30: 5–13

    Google Scholar 

  54. Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet 1999; 36(5): 315–28

    PubMed  CAS  Google Scholar 

  55. Cremers S, Sparidans R, Den Hartigh J, et al. A pharmacokinetic and pharmacodynamic model for intravenous biphosphonate (pamidronate) in osteoporosis. Eur J Clin Pharmacol 2002; 57: 883–90

    PubMed  CAS  Google Scholar 

  56. Van Gelder JM, Golomb G. The evaluation of bisphosphonates as potential drugs for calcium-related disorders. In: Ornoy A, editor. Animal models of human related calcium-metabolic disorders. Boca Raton: CRC Press, 1995: 181–206

    Google Scholar 

  57. Stepensky D, Golomb G, Hoffman A. Pharmacokinetic and pharmacodynamic evaluation of intermittent vs continuous alendronate administration in rats. J Pharm Sci 2002; 91(2): 508–16

    PubMed  CAS  Google Scholar 

  58. Hernandez C, Beaupre C, Marcus R, et al. A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment. Bone 2001; 29 Suppl. (3): 511–6

    PubMed  CAS  Google Scholar 

  59. Hernandez C, Beaupre C, Marcus R, et al. Long-term predictions of the therapeutic equivalence of daily and less than daily alendronate dosing. J Bone Miner Res 2002; 17 Suppl. (9): 1662–6

    PubMed  CAS  Google Scholar 

  60. Schnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70mg once-weekly and alendronate 10mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging (Minano) 2000; 12(1): 1–12

    CAS  Google Scholar 

  61. Reid IR, Brown JP, Burckhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 2002; 346(9): 653–61

    PubMed  CAS  Google Scholar 

  62. Liberman UA, Weiss SR, Broll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 1995; 333(22): 1437–43

    PubMed  CAS  Google Scholar 

  63. Ravn P, Neugebauer G, Christiansen C. Association betwen pharmcokinetics of oral ibadronate and clinical response in bone mass and bone turnover in women with postmenopausal osteoporosis. Bone 2002; 30 Suppl. (1): 320–4

    PubMed  CAS  Google Scholar 

  64. Wingen F, Pool BL, Klein P, et al. Anticancer activity of bisphosphonic acids in methylnitrosourea-induced mammary carcinoma of the rat-benefit of combining bisphosphonates with cytostatic agents. Invest New Drugs 1988; 6(3): 155–67

    PubMed  CAS  Google Scholar 

  65. Klenner T, Wingen F, Keppler BK, et al. Anticancer-agent-linked phosphonates with antiosteolytic and antineoplastic properties: a promising perspective in the treatment of bonerelated malignancies? J Cancer Res Clin Oncol 1990; 116(4): 341–50

    PubMed  CAS  Google Scholar 

  66. Klenner T, Valenzuela Paz P, Keppler BK, et al. Cisplatinlinked phosphonates in the treatment of the transplantable osteosarcoma in vitro and in vivo. Cancer Treat Rev 1990; 17(2–3): 253–9

    PubMed  CAS  Google Scholar 

  67. Sturtz G, Appere G, Breistol K, et al. A study of the deliverytargeting concept applied to antineoplastic drugs active on human osteosarcoma: I. synthesis and biological activity in nude mice carrying human osteosarcoma xenografts of gembisphosphonic methotrexate analogues. Eur J Med Chem 1992; 27: 825–33

    CAS  Google Scholar 

  68. Sturtz G, Couthon H, Fabulet O, et al. Synthesis of gembisphosphonic methotrexate conjugates and their biological response towards Walker s’s osteosarcoma. Eur J Med Chem 1993; 28: 899–903

    CAS  Google Scholar 

  69. Hosain F, Spencer RP, Couthon HM, et al. Targeted delivery of antineoplastic agent to bone: biodistribution studies of technetium-99m-labeled gem-bisphosphonate conjugate of methotrexate. J Nucl Med 1996; 37(1): 105–7

    PubMed  CAS  Google Scholar 

  70. Fujisaki J, Tokunaga Y, Takahashi T, et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug: I. synthesis and in vivo characterization of osteotropic carboxyfluorescein. J Drug Target 1995; 3(4): 273–82

    PubMed  CAS  Google Scholar 

  71. Gentili A, Miron SD, Bellon EM. Nonosseous accumulation of bone-seeking radiopharmaceuticals. Radiographics 1990; 10(5): 871–81

    PubMed  CAS  Google Scholar 

  72. King MA, Kilpper RW, Weber DA. A model for local accumulation of bone imaging radiopharmaceuticals. J Nucl Med 1977; 18(11): 1106–11

    PubMed  CAS  Google Scholar 

  73. Lewington VJ, McEwan AJ, Ackery DM, et al. A prospective randomized double blind crossover study to examine the efficacy of strontium-89 in pain pallation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer 1991; 27: 954–8

    PubMed  CAS  Google Scholar 

  74. Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone 2001; 28(4): 446–53

    PubMed  CAS  Google Scholar 

  75. Kraeber Bodere F, Campion L, Rousseau C, et al. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 2000; 27(10): 1487–93

    PubMed  CAS  Google Scholar 

  76. Blake GM, Zivanovic MA, McEwan AJ, et al. Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 1986; 12(9): 447–54

    PubMed  CAS  Google Scholar 

  77. Robinson RG, Blake GM, Preston DF, et al. Strontium-89: treatment results and kinetics in patients with painful metastatic prostate and breast cancer in bone. Radiographics 1989; 9(2): 271–81

    PubMed  CAS  Google Scholar 

  78. Laing AH, Ackery DM, Bayly RJ, et al. Strontium-89 chloride for pain pallation in prostatic skeletal malignancy. Br J Radiol 1991; 64: 816–22

    PubMed  CAS  Google Scholar 

  79. Cook GJ, Fogelman I. Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med 1999; 29(1): 69–79

    PubMed  CAS  Google Scholar 

  80. Bhatnagar A, Mishra P, Sharma R, et al. 99Tcm-citrate: a new bone imaging radiopharmaceutical. Nucl Med Commun 1999; 20(11): 1067–76

    PubMed  CAS  Google Scholar 

  81. Schwartz Z, Shani J, Soskolne WA, et al. Uptake and biodistribution of technetium-99m-MD32P during rat tibial bone repair. J Nucl Med 1993; 34(1): 104–8

    PubMed  CAS  Google Scholar 

  82. Reske SN. Recent advances in bone marrow scanning. Eur J Nucl Med 1991; 18(3): 203–21

    PubMed  CAS  Google Scholar 

  83. Os’Flaherty EJ. PBK modeling for metals: examples with lead, uranium, and chromium. Toxicol Lett 1995; 83: 367–72

    Google Scholar 

  84. Os’Flaherty EJ. A physiologically based model of chromium kinetics in the rat. Toxicol Appl Pharmacol 1996; 138(1): 54–64

    Google Scholar 

  85. Os’Flaherty EJ. Physiologically based models of metal kinetics. Crit Rev Toxicol 1998; 28(3): 271–317

    Google Scholar 

  86. Leggett RW, Eckerman KF. A systemic biokinetic model for polonium. Sci Total Environ 2001; 275(1–3): 109–25

    PubMed  CAS  Google Scholar 

  87. Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol 2001; 88(4): 159–67

    PubMed  CAS  Google Scholar 

  88. Silbergeld EK. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect 1991; 91: 63–70

    PubMed  CAS  Google Scholar 

  89. Hamilton JD, Os’Flaherty EJ. Influence of lead on mineralization during bone growth. Fundam Appl Toxicol 1995; 26(2): 265–71

    PubMed  CAS  Google Scholar 

  90. Os’Flaherty EJ, Inskip MJ, Franklin CA, et al. Evaluation and modification of a physiologically based model of lead kinetics using data from a sequential isotope study in cynomolgus monkeys. Toxicol Appl Pharmacol 1998; 149(1): 1–16

    Google Scholar 

  91. Pounds JG, Leggett RW. The ICRP age-specific biokinetic model for lead: validations, empirical comparisons, and explorations. Environ Health Perspect 1998; 106 Suppl. 6: 1505–11

    PubMed  CAS  Google Scholar 

  92. US Environmental Protection Agency. Guidance manual for the integrated exposure uptake biokinetic model for lead in children. EPA/540/R-93/081.PB93-963510. Washington: US Environmental Protection Agency, 1994

    Google Scholar 

  93. Mason HJ. A biokinetic model for lead metabolism with a view to its extension to pregnancy and lactation: (1) further validation of the original model for non-pregnant adults. Sci Total Environ 2000; 246(1): 69–78

    PubMed  CAS  Google Scholar 

  94. Os’Flaherty EJ. Physiologically based models for bone-seeking elements: V. lead absorption and disposition in childhood. Toxicol Appl Pharmacol 1995; 131(2): 297–308

    Google Scholar 

  95. Fleming DE, Chettle DR, Webber CE, et al. The Os’Flaherty model of lead kinetics: an evaluation using data from a lead smelter population. Toxicol Appl Pharmacol 1999; 161(1): 100–9

    PubMed  CAS  Google Scholar 

  96. Beck BD, Mattuck RL, Bowers TS, et al. The development of a stochastic physiologically-based pharmacokinetic model for lead. Sci Total Environ 2001; 274(1–3): 15–9

    PubMed  CAS  Google Scholar 

  97. Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician 2001; 63(12): 2413–20

    PubMed  CAS  Google Scholar 

  98. Mader J, Calhoun J. Osteomyelitis. In: Mandell G, Bennet J, Dolin R, editors. Douglas and Bennett s’s principles and practice of infectious diseases. Philadelphia: Churchill Livingstone, 2000: 1182–96

    Google Scholar 

  99. Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med 1997; 336(14): 999–1007

    PubMed  CAS  Google Scholar 

  100. Henry SL, Galloway KP. Local antibacterial therapy for the management of orthopaedic infections: pharmacokinetic considerations. Clin Pharmacokinet 1995; 29(1): 36–45

    PubMed  CAS  Google Scholar 

  101. Mader JT, Shirtliff ME, Bergquist SC, et al. Antimicrobial treatment of chronic osteomyelitis. Clin Orthop 1999; 360: 47–65

    PubMed  Google Scholar 

  102. Mader J, Adams K. Experimental osteomyelitis. In: Schlossberg D, editor. Orthopedic infection. New York: Springer-Verlag, 1988: 39–48

    Google Scholar 

  103. Mader JT, Adams K, Morrison L. Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother 1989; 33(10): 1760–4

    PubMed  CAS  Google Scholar 

  104. Bloom JD, Fitzgerald RH, Washington II JA, et al. The transcapillary passage and interstitial fluid concentration of penicillin in canine bone. J Bone Joint Surg Am 1980; 62(7): 1168–75

    PubMed  CAS  Google Scholar 

  105. Lunke RJ, Fitzgerald RH, Washington II JA. Pharmacokinetics of cefamandole in osseous tissue. Antimicrob Agents Chemother 1981; 19(5): 851–8

    PubMed  CAS  Google Scholar 

  106. Daly RC, Fitzgerald RH, Washington II JA. Penetration of cefazolin into normal and osteomyelitic canine cortical bone. Antimicrob Agents Chemother 1982; 22(3): 461–9

    PubMed  CAS  Google Scholar 

  107. Fitzgerald R. Antibiotic distribution in normal and osteomyelitic bone. Orthop Clin North Am 1984; 15: 537–46

    PubMed  Google Scholar 

  108. Fitzgerald R, Whalen J, Peterson S. Pathophysiology of osteomyelitis and pharmacokinetics of antimicrobial agents in normal and osteomyelitic bone. In: Esterhai JL, Gristina AG, Poss R, et al. editors. Musculoskeletal infection. Park Ridge: American Academy of Orthopedic Surgeons, 1990: 387–99

    Google Scholar 

  109. Raasch R. Osteomyelitis/septic arthritis. In: Young L, Koda-Kimble M, editors. Applied therapeutics: the clinical use of drugs. Vancouver (WA): Applied Therapeutics Inc, 1995: 1–12

    Google Scholar 

  110. Dash AK, Suryanarayanan R. An implantable dosage form for the treatment of bone infections. Pharm Res 1992; 9(8): 993–1002

    PubMed  CAS  Google Scholar 

  111. Overbeck JP, Winckler ST, Meffert R, et al. Penetration of ciprofloxacin into bone: a new bioabsorbable implant. J Invest Surg 1995; 8(3): 155–62

    PubMed  CAS  Google Scholar 

  112. Zhang X, Wyss UP, Pichora D, et al. Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties. J Pharm Pharmacol 1994; 46(9): 718–24

    PubMed  CAS  Google Scholar 

  113. Jain AK, Panchagnula R. Skeletal drug delivery systems. Int J Pharm 2000; 206(1–2): 1–12

    PubMed  CAS  Google Scholar 

  114. Kanellakopoulou K, Giamarellos Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs 2000; 59(6): 1223–32

    PubMed  CAS  Google Scholar 

  115. Kanis JA, McCloskey EV. Bone turnover and biochemical markers in malignancy. Cancer 1997; 80 (8 Suppl.): 1538–45

    PubMed  CAS  Google Scholar 

  116. Hu H, Rabinowitz M, Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 1998; 106(1): 1–8

    PubMed  CAS  Google Scholar 

  117. Delmas PD, Eastell R, Garnero P, et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 2000; 11 Suppl. 6: s2–17

    PubMed  Google Scholar 

  118. Delmas PD. Markers of bone turnover for monitoring treatment of osteoporosis with antiresorptive drugs. Osteoporos Int 2000; 11 Suppl. 6: s66–76

    PubMed  Google Scholar 

  119. Woitge H, Siebel M. Biochemical markers to survey bone resorption. Rheum Dis Clin North Am 2001; 27: 49–80

    PubMed  CAS  Google Scholar 

  120. Klein L, Jackman KV. Assay of bone resorption in vivo with 3H-tetracycline. Calcif Tissue Res 1976; 20(3): 275–90

    PubMed  CAS  Google Scholar 

  121. DeMoss DL, Wright GL. Analysis of whole skeleton 3H-tetracycline loss as a measure of bone resorption in maturing rats. Calcif Tissue Int 1997; 61(5): 412–7

    PubMed  CAS  Google Scholar 

  122. Klein L. Direct measurement of bone resorption and calcium conservation during vitamin D deficiency or hypervitaminosis D. Proc Natl Acad Sci U S A 1980; 77(4): 1818–22

    PubMed  CAS  Google Scholar 

  123. Klein L, Heiple KG, Stromberg BV. Comparison of growthinduced resorption and denervation-induced resorption on the release of [3H]tetracycline, 45calcium, and [3H]collagen from whole bones of growing rats. J Orthop Res 1983; 1(1): 50–6

    PubMed  CAS  Google Scholar 

  124. Muhlbauer R, Fleisch H. A method for continual monitoring of bone resorption in rats: evidence for a diurnal rhythm. Am J Physiol 1990; 259: 679–89

    Google Scholar 

  125. Muhlbauer R, Fleisch H. The food-induced stimulation of bone resorption in the rat, assessed by the urinary [3H]-tetracycline excretion, is mediated by parathyroid hormone. Bone 1995; 17 Suppl. 4: 449S–53S

    PubMed  CAS  Google Scholar 

  126. Svanberg M, Mattila P, Knuuttila M. Dietary xylitol retards the ovaryectomy-induced increase of bone turnover in rats. Calcif Tissue Int 1997; 60: 462–6

    PubMed  CAS  Google Scholar 

  127. Klein L, Reilly DT. Concurrent exchange of 45Ca and 3H- tetracycline from rat bone in vitro. Calcif Tissue Res 1976; 2: 229–34

    PubMed  Google Scholar 

  128. Li XQ, Donovan CA, Klein L. A pharmacokinetic model in the rat and rabbit of the direct measurement of mature bone resorption in vivo with [3H]tetracycline. J Pharm Sci 1989; 78(10): 823–8

    PubMed  CAS  Google Scholar 

  129. Klein L, Li QX, Donovan CA, et al. Variation of resorption rates in vivo of various bones in immature rats. Bone Miner 1990; 8(2): 169–75

    PubMed  CAS  Google Scholar 

  130. Muhlbauer RC, Bauss F, Schenk R, et al. BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 1991; 6(9): 1003–11

    PubMed  CAS  Google Scholar 

  131. Golomb G, Eitan Y, Hoffman A. Measurement of serum [3H]tetracycline kinetics and indices of kidney function facilitate study of the activity and toxic effects of bisphosphonates in bone resorption. Pharm Res 1992; 9(8): 1018–23

    PubMed  CAS  Google Scholar 

  132. Antic V, Fleisch H, Muhlbauer R. Effect of bisphosphonates on the increase in bone resorption induced by a low calcium diet. Calcif Tissue Int 1996; 58: 443–8

    PubMed  CAS  Google Scholar 

  133. Cecchini M, Fleisch H, Muhlbauer R. Ipriflavone inhibits bone resorption in intact and ovariectomized rats. Calcif Tissue Int 1997; 61 Suppl. 1: S9–11

    PubMed  CAS  Google Scholar 

  134. Milch R, Rall D, Tobie J. Fluorescence of tetracycline antibio tics in bone. J Bone Joint Surg 1958; 40: 897–910

    PubMed  Google Scholar 

  135. Frost HM. Tetracyclines and fetal bones. Henry Ford Hosp Med J 1965; 13(4): 403–10

    PubMed  CAS  Google Scholar 

  136. Stewart D. The reincorporation in calcified tissues of tetracycline released following its deposition in the bone of rats. Arch Oral Biol 1973; 18: 759–64

    CAS  Google Scholar 

  137. Klein L, Wong K. Effect of calcium deficiency upon the loss of [3H]tetracycline and 14C-collagen from bone of prelabeled rats. Bone 1986; 7: 392–3

    Google Scholar 

  138. Chen TL, Klein L. Fetal rat bone in organ culture: effect of bone growth and bone atrophy on the comparative losses of 45Ca and 3H-tetracycline. Calcif Tissue Res 1978; 25(3): 255–63

    PubMed  CAS  Google Scholar 

  139. Klein L, Wong KM, Simmelink JW. Biochemical and autoradiographic evaluation of bone turnover in prelabeled dogs and rabbits on normal and calcium-deficient diets. Bone 1985; 6(5): 395–9

    PubMed  CAS  Google Scholar 

  140. Chulski T, Johnson R, Schlagel C. Direct proportionality of urinary excretion rate and serum level of tetracycline in human subjects. Nature 1963; 198: 450–3

    PubMed  CAS  Google Scholar 

  141. Rao HV, Beliles RP, Whitford GM, et al. A physiologically based pharmacokinetic model for fluoride uptake by bone. Regul Toxicol Pharmacol 1995; 22(1): 30–42

    PubMed  CAS  Google Scholar 

  142. Whitford GM. Fluoride metabolism and excretion in children. J Public Health Dent 1999; 59(4): 224–8

    PubMed  CAS  Google Scholar 

  143. Eble DM, Deaton TG, Wilson FC, et al. Fluoride concentrations in human and rat bone. J Public Health Dent 1992; 52(5): 288–91

    PubMed  CAS  Google Scholar 

  144. Friedman M, Steinberg D. Sustained-release delivery systems for treatment of dental diseases. Pharm Res 1990; 7(4): 313–7

    PubMed  CAS  Google Scholar 

  145. Anonymous. Position of the American Dietetic Association: the impact of fluoride on health. J Am Diet Assoc 2001; 101 (1): 126-32

  146. Caverzasio J, Palmer G, Bonjour JP. Fluoride: mode of action. Bone 1998; 22(6): 585–9

    PubMed  CAS  Google Scholar 

  147. Riggs BL, Os’Fallon WM, Lane A, et al. Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis. J Bone Miner Res 1994; 9(2): 265–75

    PubMed  CAS  Google Scholar 

  148. Meunier PJ, Sebert JL, Reginster JY, et al. Fluoride salts are no better at preventing new vertebral fractures than calciumvitamin D in postmenopausal osteoporosis: the FAVO Study. Osteoporos Int 1998; 8(1): 4–12

    PubMed  CAS  Google Scholar 

  149. Laufer D, Ben Shachar D, Livne E, et al. Enhancing effects of fluoride-containing ceramic implants on bone formation in the dog femur. J Craniomaxillofac Surg 1988; 16(1): 40–5

    PubMed  CAS  Google Scholar 

  150. Anderson PA, Copenhaver JC, Tencer AF, et al. Response of cortical bone to local controlled release of sodium fluoride: the effect of implant insertion site. J Orthop Res 1991; 9(6): 890–901

    PubMed  CAS  Google Scholar 

  151. Guise JM, McCormack A, Anderson PA, et al. Effect of controlled local release of sodium fluoride on trabecular bone. J Orthop Res 1992; 10(4): 588–95

    PubMed  CAS  Google Scholar 

  152. Magnan B, Gabbi C, Regis D. Sodium fluoride sustainedrelease bone cement: an experimental study in vitro and in vivo. Acta Orthop Belg 1994; 60(1): 72–9

    PubMed  CAS  Google Scholar 

  153. Allolio B, Lehmann R. Drinking water fluoridation and bone. Exp Clin Endocrinol Diabetes 1999; 107(1): 12–20

    PubMed  CAS  Google Scholar 

  154. Castioni MV, Baehni PC, Gurny R. Current status in oral fluoride pharmacokinetics and implications for the prophylaxis against dental caries. Eur J Pharm Biopharm 1998; 45: 101–11

    PubMed  CAS  Google Scholar 

  155. Ekstrand J, Alvan G, Boreus LO, et al. Pharmacokinetics of fluoride in man after single and multiple oral doses. Eur J Clin Pharmacol 1977; 12(4): 311–7

    PubMed  CAS  Google Scholar 

  156. Charkes ND, Makler PT, Philips C. Studies of skeletal tracer kinetics: I. digital-computer solution of a five-compartment model of [18F]fluoride kinetics in humans. J Nucl Med 1978; 19(12): 1301–9

    PubMed  CAS  Google Scholar 

  157. Charkes ND, Brookes M, Makler PT. Studies of skeletal tracer kinetics: II. evaluation of a five-compartment model of [18F]fluoride kinetics in rats. J Nucl Med 1979; 20(11): 1150–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Professor Amnon Hoffman is affiliated with the David R. Bloom Center for Pharmacy. The authors thank Dr Joshua Backon for his valuable comments. There were no additional grants or any conflicts of interest that are directly relevant to the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepensky, D., Kleinberg, L. & Hoffman, A. Bone as an Effect Compartment. Clin Pharmacokinet 42, 863–881 (2003). https://doi.org/10.2165/00003088-200342100-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342100-00001

Keywords

Navigation