Skip to main content
Log in

Clinical Pharmacokinetic and Pharmacodynamic Profile of Cinacalcet Hydrochloride

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cinacalcet hydrochloride (cinacalcet) is a calcimimetic approved for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease (CKD) receiving dialysis and for the treatment of hypercalcaemia in patients with parathyroid carcinoma.

Following oral administration, peak plasma concentrations of cinacalcet occur within 2–6 hours. The absolute bioavailability is 20–25%, and administration of cinacalcet with low- or high-fat meals increases exposure (area under the plasma concentration-time curve from time zero to infinity [AUC]) 1.5- to 1.8-fold. Cinacalcet has no significant interaction with calcium carbonate or sevelamer hydrochloride, phosphate binders commonly used in the treatment of patients with CKD receiving dialysis. The terminal elimination half-life is 30–40 hours, and steady-state concentrations are achieved within 7 days. The pharmacokinetics of cinacalcet are dose proportional over the dose range of 30–180 mg.

The pharmacokinetic profile of cinacalcet is not notably affected by varying degrees of renal impairment. The pharmacokinetics of cinacalcet are comparable between healthy subjects, patients with primary hyperparathyroidism and patients with secondary hyperparathyroidism with reduced renal function (including those patients with secondary hyperparathyroidism receiving dialysis). Additionally, the pharmacokinetics of cinacalcet are similar in patients with secondary hyperparathyroidism receiving haemodialysis and patients with secondary hyperparathyroidism receiving peritoneal dialysis. Mild hepatic impairment does not affect the pharmacokinetics of cinacalcet, whereas moderate or severe hepatic impairment increases the exposure (AUC) by approximately 2- and 4-fold, respectively. Age, sex, bodyweight and race do not notably affect the pharmacokinetics of cinacalcet.

Cinacalcet is extensively metabolized by multiple hepatic cytochrome P450 (CYP) enzymes (primarily 3A4, 2D6 and 1A2) with <1% of the parent drug excreted in the urine. Dose adjustments of cinacalcet may be necessary, and parathyroid hormone (PTH) and serum calcium concentrations should be closely monitored if a patient initiates or discontinues therapy with a strong CYP3A4 inhibitor (e.g. ketoconazole, erythromycin, itraconazole). Cinacalcet is a strong inhibitor of CYP2D6; therefore, dose adjustment of concomitant medications that are predominantly metabolized by CYP2D6 and have a narrow therapeutic index (e.g. flecainide, vinblastine, thioridazine and most tricyclic antidepressants) may be required. Cinacalcet does not appreciably inhibit or induce the activities of CYP3A4, 1A2, 2C9 or 2C19.

An inverse relationship exists between plasma PTH and cinacalcet concentrations. PTH concentrations are greatest before dose administration when the cinacalcet concentration is lowest (24 hours after the previous day’s dose). Nadir PTH levels occur approximately 2–3 hours after dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1

Similar content being viewed by others

References

  1. Silverberg SJ, Bilezikian JP. The diagnosis and management of asymptomatic primary hyperparathyroidism. Nat Clin Pract Endocrinol Metab 2006 Sep; 2(9): 494–503

    Article  PubMed  Google Scholar 

  2. Slatopolsky E, Brown A, Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney Int Suppl 1999 Dec; 73: S14–9

    Article  PubMed  CAS  Google Scholar 

  3. Wermers RA, Khosla S, Atkinson EJ, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993–2001: an update on the changing epidemiology of the disease. J Bone Miner Res 2006 Jan; 21(1): 171–7

    Article  PubMed  Google Scholar 

  4. Shane E. Clinical review 122: parathyroid carcinoma. J Clin Endocrinol Metab 2001 Feb; 86(2): 485–93

    Article  PubMed  CAS  Google Scholar 

  5. US Renal Data System. USRDS 2007 annual data report. Bethesda (MD): National Institute of Diabetes and Digestive Kidney Diseases, 2007 [online]. Available from URL: http://www.usrds.org/atlas_2007.htm [Accessed 2009 Mar 26]

  6. Martinez I, Saracho R, Montenegro J, et al. The importance of dietary calcium and phosphorous in the secondary hyperparathyroidism of patients with early renal failure. Am J Kidney Dis 1997 Apr; 29(4): 496–502

    Article  PubMed  CAS  Google Scholar 

  7. Rodriguez M, Nemeth E, Martin D. The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Renal Physiol 2005 Feb; 288(2): F253–64

    Article  PubMed  CAS  Google Scholar 

  8. Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study. Kidney Int 2005 Mar; 67(3): 1179–87

    Article  PubMed  CAS  Google Scholar 

  9. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004; 15(8): 2208–18

    Article  PubMed  CAS  Google Scholar 

  10. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000 May 18; 342(20): 1478–83

    Article  PubMed  CAS  Google Scholar 

  11. Verberckmoes SC, Persy V, Behets GJ, et al. Uremia-related vascular calcification: more than apatite deposition. Kidney Int 2007 Feb; 71(4): 298–303

    Article  PubMed  CAS  Google Scholar 

  12. Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 2000 Jul; 58(1): 396–9

    Article  PubMed  CAS  Google Scholar 

  13. Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006 Jul; 17(7): 2034–47

    Article  PubMed  Google Scholar 

  14. Raggi P. Cardiovascular calcification in end stage renal disease. Contrib Nephrol 2005; 149: 272–8

    Article  PubMed  Google Scholar 

  15. Blacher J, Guerin AP, Pannier B, et al. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001; 38(4): 938–42

    Article  PubMed  CAS  Google Scholar 

  16. Guérin AP, London GM, Marchais SJ, et al. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant 2000 Jul; 15(7): 1014–21

    Article  PubMed  Google Scholar 

  17. Blacher J, Safar ME, Guerin AP, et al. Aortic pulse wave velocity index and mortality in end-stage renal disease. Kidney Int 2003 May; 63(5): 1852–60

    Article  PubMed  Google Scholar 

  18. Locatelli F, Cannata-Andia JB, Drueke TB, et al. Management of disturbances of calcium and phosphate metabolism in chronic renal insufficiency, with emphasis on the control of hyperphosphatemia. Nephrol Dial Transplant 2002; 17(5): 723–31

    Article  PubMed  CAS  Google Scholar 

  19. Nemeth EF, Heaton WH, Miller M, et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther 2004 Feb; 308(2): 627–35

    Article  PubMed  CAS  Google Scholar 

  20. Lindberg JS, Culleton B, Wong G, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol 2005; 16(3): 800–7

    Article  PubMed  CAS  Google Scholar 

  21. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003 Oct; 42 (4 Suppl. 3): S1-201

  22. Peacock M, Bilezikian JP, Klassen PS, et al. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2005 Jan; 90(1): 135–41

    Article  PubMed  CAS  Google Scholar 

  23. Shoback DM, Bilezikian JP, Turner SA, et al. The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J Clin Endocrinol Metab 2003 Dec; 88(12): 5644–9

    Article  PubMed  CAS  Google Scholar 

  24. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 2004; 350(15): 1516–25

    Article  PubMed  CAS  Google Scholar 

  25. Padhi D, Salfi M, Harris RZ. The pharmacokinetics of cinacalcet are unaffected following consumption of high- and low-fat meals. Am J Ther 2007 May–Jun; 14(3): 235–40

    Article  PubMed  Google Scholar 

  26. Sensipar® (cinacalcet) tablets: US prescribing information. Thousand Oaks (CA): Amgen Inc., 2008 Dec [online]. Available from URL: http://www.amgen.com/pdfs/misc/sensipar_pi.pdf [Accessed 2009 Mar 26]

  27. Harris RZ, Padhi D, Marbury TC, et al. Pharmacokinetics, pharmacodynamics, and safety of cinacalcet hydrochloride in hemodialysis patients at doses up to 200 mg once daily. Am J Kidney Dis 2004; 44(6): 1070–6

    Article  PubMed  CAS  Google Scholar 

  28. European Medicines Agency. Mimpara: European public assessment report. Scientific discussion [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/mimpara/12029804en6.pdf [Accessed 2009 Mar 26]

  29. Bajpai M, Esmay J, Chi V, et al. In vitro metabolism and prediction of drug-drug interactions of the calcimimetic agent cinacalcet HCl [abstract]. Drug Metab Rev 2005; 37 Suppl. 2: 124

    Google Scholar 

  30. Harris RZ, Salfi M, Posvar E, et al. Pharmacokinetics of desipramine HCl when administered with cinacalcet HCl. Eur J Clin Pharmacol 2007 Feb; 63(2): 159–63

    Article  PubMed  CAS  Google Scholar 

  31. Harris RZ, Salfi M, Sullivan JT, et al. Pharmacokinetics of cinacalcet hydrochloride when administered with ketoconazole. Clin Pharmacokinet 2007; 46(6): 495–501

    Article  PubMed  CAS  Google Scholar 

  32. Padhi D, Salfi M, Erbeck N, et al. Cinacalcet HCl does not affect CYP3A Activity, a metabolic pathway for commonly used immunosuppressive agents [abstract no. T-PO-1602]. World Congress of Nephrology; 2007 Apr 21–25; Rio de Janeiro

    Google Scholar 

  33. Kumar GN, Sproul C, Poppe L, et al. Metabolism and disposition of calcimimetic agent cinacalcet HCl in humans and animal models. Drug Metab Dispos 2004 Dec; 32(12): 1491–500

    Article  PubMed  CAS  Google Scholar 

  34. Padhi D, Harris RZ, Salfi M, et al. No effect of renal function or dialysis on pharmacokinetics of cinacalcet (Sensipar/Mimpara). Clin Pharmacokinetics 2005; 44(5): 509–16

    Article  CAS  Google Scholar 

  35. Padhi D, Harris R, Salfi M, et al. The pharmacokinetics of cinacalcet HCl are not altered by renal impairment or mode of renal replacement therapy [abstract no. M477]. World Congress of Nephrology; 2003 Jun 8–12; Berlin

    Google Scholar 

  36. Ohashi N, Uematsu T, Nagashima S, et al. The calcimimetic agent KRN 1493 lowers plasma parathyroid hormone and ionized calcium concentrations in patients with chronic renal failure on haemodialysis both on the day of haemodialysis and on the day without haemodialysis. Br J Clin Pharmacol 2004 Jun; 57(6): 726–34

    Article  PubMed  CAS  Google Scholar 

  37. Finelli L, Miller JT, Tokars JI, et al. National surveillance of dialysisassociated diseases in the United States, 2002. Semin Dial 2005 Jan–Feb; 18(1): 52–61

    Article  PubMed  Google Scholar 

  38. Padhi D, Harris RZ, Salfi M, et al. Pharmacokinetics and pharmacodynamics of cinacalcet in hepatic impairment: phase I, open-label, parallel-group, single-dose, single-centre study. Clin Drug Investig 2008; 28(10): 635–43

    Article  PubMed  CAS  Google Scholar 

  39. Tveit DP, Hypolite IO, Hshieh P, et al. Chronic dialysis patients have high risk for pulmonary embolism. Am J Kidney Dis 2002 May; 39(5): 1011–7

    Article  PubMed  Google Scholar 

  40. Falck P, Vethe NT, Asberg A, et al. Cinacalcet’s effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients. Nephrol Dial Transplant 2008 Mar; 23(3): 1048–53

    Article  PubMed  CAS  Google Scholar 

  41. Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J Clin Pharmacol 2003 May; 43(5): 443–69

    PubMed  CAS  Google Scholar 

  42. Hartmann M, Theiss U, Huber R, et al. Twenty-four-hour intragastric pH profiles and pharmacokinetics following single and repeated oral administration of the proton pump inhibitor pantoprazole in comparison to omeprazole. Aliment Pharmacol Ther 1996 Jun; 10(3): 359–66

    Article  PubMed  CAS  Google Scholar 

  43. Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997 Aug; 17(4): 284–91

    Article  PubMed  CAS  Google Scholar 

  44. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32 Suppl. 1: 1–21

    Article  PubMed  CAS  Google Scholar 

  45. Padhi D, Sullivan JT. Cinacalcet does not affect the pharmacokinetics or pharmacodynamics of warfarin. Drugs R D 2007; 8(2): 79–87

    Article  PubMed  CAS  Google Scholar 

  46. Goodman WG, Hladik GA, Turner SA, et al. The calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol 2002 Apr; 13(4): 1017–24

    PubMed  CAS  Google Scholar 

  47. Quarles LD, Sherrard DJ, Adler S, et al. The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol 2003 Mar; 14(3): 575–83

    Article  PubMed  CAS  Google Scholar 

  48. Lindberg JS, Moe SM, Goodman WG, et al. The calcimimetic AMG 073 reduces parathyroid hormone and calcium x phosphorus in secondary hyperparathyroidism. Kidney Int 2003; 63(1): 248–54

    Article  PubMed  CAS  Google Scholar 

  49. Moe SM, Chertow GM, Coburn JW, et al. Achieving NKF-K/DOQI bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int 2005 Feb; 67(2): 760–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this manuscript was supported by Amgen Inc. (Thousand Oaks, CA, USA). The authors would like to thank William W. Stark Jr, PhD (Amgen Inc.) and Mandy Suggitt (on behalf of Amgen Inc.) for assistance in the writing of this manuscript.

Drs Padhi and Harris are employees of Amgen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desmond Padhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhi, D., Harris, R. Clinical Pharmacokinetic and Pharmacodynamic Profile of Cinacalcet Hydrochloride. Clin Pharmacokinet 48, 303–311 (2009). https://doi.org/10.2165/00003088-200948050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200948050-00002

Keywords

Navigation