Skip to main content
Log in

Matrix Metalloproteinases in the Pathogenesis of Asthma and COPD

Implications for Therapy

  • Leading Article
  • Published:
Treatments in Respiratory Medicine

Abstract

While asthma is an inflammatory disorder of the airways involving mediators released from mast cells and eosinophils, inflammation alone is insufficient to explain the chronic nature of the disease. Recent progress in the understanding of disease pathogenesis has revealed that airway remodeling, which is at least in part due to an excess of extracellular matrix (ECM) deposition in the airway wall, plays a significant role in airflow obstruction. Matrix metalloproteinases (MMPs) have been suggested to be the major proteolytic enzymes to induce airway remodeling in asthma and COPD. It has been widely accepted that different inflammatory processes are involved in asthma and COPD with different inflammatory cells, mediators, and responses to treatments. Despite these different processes, airflow obstruction and airway remodeling characterize these two diseases. MMP-2 and -9 have been reported to be involved in the pathogenesis of airway remodeling in both diseases and MMP-12, in addition to these MMPs, in the pathogenesis of COPD.

In this review, we discuss the current views on the role of MMPs in the pathogenesis of bronchial asthma and COPD. Anti-MMP therapy could theoretically be useful to prevent airway remodeling in asthma and COPD. However, to date no clinical data are available regarding the efficacy of anti-MMP therapies in the treatment of patients with asthma and COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barnes PJ. Pathophysiology of asthma. Br J Clin Pharmacol 1996; 42(1): 3–10

    Article  PubMed  CAS  Google Scholar 

  2. Thompson AB, Daughton D, Robbins RA, et al. Intraluminal airway inflammation in chronic bronchitis: characterization and correlation with clinical parameters. Am Rev Respir Dis 1989; 140(6): 1527–37

    Article  PubMed  CAS  Google Scholar 

  3. Roberts CR, Walker DC, Schellenberg RR. Extracellular matrix. Clin Allergy Immunol 2002; 16: 143–78

    PubMed  CAS  Google Scholar 

  4. Albini A. Tumor and endothelial cell invasion of basement membranes: the matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 1998; 4(3): 230–41

    Article  PubMed  CAS  Google Scholar 

  5. Gipson IK, Inatomi T. Extracellular matrix and growth factors in corneal wound healing. Curr Opin Ophthalmol 1995; 6(4): 3–10

    Article  PubMed  CAS  Google Scholar 

  6. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 1990; 6(4): 121–5

    Article  PubMed  CAS  Google Scholar 

  7. Friedl P, Brocker EB. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 2000; 57(1): 41–64

    Article  PubMed  CAS  Google Scholar 

  8. Wilson JW, Li X, Pain MC. The lack of distensibility of asthmatic airways. Am Rev Respir Dis 1993; 148(3): 806–9

    Article  PubMed  CAS  Google Scholar 

  9. Ohnishi K, Takagi M, Kurokawa Y, et al. Matrix metalloproteinase-mediated extracellular matrix protein degradation in human pulmonary emphysema. Lab Invest 1998; 78(9): 1077–87

    PubMed  CAS  Google Scholar 

  10. Wiggs BR, Bosken C, Pare PD, et al. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1992; 145(6): 1251–8

    PubMed  CAS  Google Scholar 

  11. Torii K, Iida K, Miyazaki Y, et al. Higher concentrations of matrix metalloproteinases in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 1997; 155(1): 43–6

    PubMed  CAS  Google Scholar 

  12. Carney DE, McCann UG, Schiller HJ, et al. Metalloproteinase inhibition prevents acute respiratory distress syndrome. J Surg Res 2001; 99(2): 245–52

    Article  PubMed  CAS  Google Scholar 

  13. Prikk K, Maisi P, Pirila E, et al. In vivo collagenase-2 (MMP-8) expression by human bronchial epithelial cells and monocytes/macrophages in bronchiectasis. J Pathol 2001; 194(2): 232–8

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi T, Stetler-Stevenson WG, Fleming MV, et al. Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis. Am J Pathol 1996; 149(4): 1241–56

    PubMed  CAS  Google Scholar 

  15. Liotta LA, Rao CN, Barsky SH. Tumor invasion and the extracellular matrix. Lab Invest 1983; 49(6): 636–49

    PubMed  CAS  Google Scholar 

  16. Cox G, Jones JL, O’Byrne KJ. Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res 2000; 6(6): 2349–55

    PubMed  CAS  Google Scholar 

  17. Galligioni E, Ferro A. Angiogenesis and antiangiogenic agents in non-small cell lung cancer. Lung Cancer 2001; 34Suppl. 4: 3–7

    Article  Google Scholar 

  18. Phan SH, Thrall RS, Ward PA. Bleomycin-induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am Rev Respir Dis 1980; 121(3): 501–6

    PubMed  CAS  Google Scholar 

  19. Caughey GH. Chairman’s summary: mechanisms of airway remodeling. Am J Respir Crit Care Med 2001; 164 (10 Pt 2): S26–7

    PubMed  CAS  Google Scholar 

  20. ten Brinke A, Grootendorst DC, Schmidt JT, et al. Chronic sinusitis in severe asthma is related to sputum eosinophilia. J Allergy Clin Immunol 2002; 109(4): 621–6

    Article  PubMed  Google Scholar 

  21. Cutz E, Levison H, Cooper DM. Ultrastructure of airways in children with asthma. Histopathology 1978; 2(6): 407–21

    Article  PubMed  CAS  Google Scholar 

  22. Boulet LP, Laviolette M, Turcotte H, et al. Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest 1997; 112(1): 45–52

    Article  PubMed  CAS  Google Scholar 

  23. Ornstein DL, Cohn KH. Balance between activation and inhibition of matrix metalloproteinase-2 (MMP-2) is altered in colorectal tumors compared to normal colonic epithelium. Dig Dis Sci 2002; 47(8): 1821–30

    Article  PubMed  CAS  Google Scholar 

  24. Rajah R, Katz L, Nunn S, et al. Insulin-like growth factor binding protein (IGFBP) proteases: functional regulators of cell growth. Prog Growth Factor Res 1995; 6(2–4): 273–84

    Article  PubMed  CAS  Google Scholar 

  25. Rajah R, Nachajon RV, Collins MH, et al. Elevated levels of the IGF-binding protein protease MMP-1 in asthmatic airway smooth muscle. Am J Respir Cell Mol Biol 1999; 20(2): 199–208

    PubMed  CAS  Google Scholar 

  26. Hoshino M, Nakamura Y, Sim J, et al. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 1998; 102(5): 783–8

    Article  PubMed  CAS  Google Scholar 

  27. Yao PM, Lemjabbar H, D’Ortho MP, et al. Balance between MMP-9 and TIMP-1 expressed by human bronchial epithelial cells: relevance to asthma. Ann N Y Acad Sci 1999; 878: 512–4

    Article  PubMed  CAS  Google Scholar 

  28. Ohno I, Ohtani H, Nitta Y, et al. Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol 1997; 16(3): 212–9

    PubMed  CAS  Google Scholar 

  29. Dahlen B, Shute J, Howarth P. Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 1999; 54(7): 590–6

    Article  PubMed  CAS  Google Scholar 

  30. Holz O, Jorres RA, Magnussen H. Monitoring central and peripheral airway inflammation in asthma. Respir Med 2000; 94Suppl. D: S7–12

    PubMed  Google Scholar 

  31. Vignola AM, Riccobono L, Mirabella A, et al. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 1998; 158(6): 1945–50

    PubMed  CAS  Google Scholar 

  32. Johnson S, Knox A. Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am J Physiol 1999; 277 (6 Pt 1): L1109–17

    PubMed  CAS  Google Scholar 

  33. Legrand C, Polette M, Tournier JM, et al. uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res 2001; 264(2): 326–36

    Article  PubMed  CAS  Google Scholar 

  34. Corry DB, Rishi K, Kanellis J, et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002; 3(4): 347–53

    Article  PubMed  CAS  Google Scholar 

  35. Lemjabbar H, Gosset P, Lamblin C, et al. Contribution of 92 kDa gelatinase/type IV collagenase in bronchial inflammation during status asthmaticus. Am J Respir Crit Care Med 1999; 159 (4 Pt 1): 1298–307

    PubMed  CAS  Google Scholar 

  36. Suzuki R, Kato T, Miyazaki Y, et al. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in sputum from patients with bronchial asthma. J Asthma 2001; 38(6): 477–84

    Article  PubMed  CAS  Google Scholar 

  37. Belleguic C, Corbel M, Germain N, et al. Increased release of matrix metalloproteinase-9 in the plasma of acute severe asthmatic patients. Clin Exp Allergy 2002; 32(2): 217–23

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka H, Miyazaki N, Oashi K, et al. Sputum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio in acute asthma. J Allergy Clin Immunol 2000; 105(5): 900–5

    Article  PubMed  CAS  Google Scholar 

  39. Mautino G, Oliver N, Chanez P, et al. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am J Respir Cell Mol Biol 1997; 17(5): 583–91

    PubMed  CAS  Google Scholar 

  40. Kelly EA, Busse WW, Jarjour NN. Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am J Respir Crit Care Med 2000; 162 (3 Pt 1): 1157–61

    PubMed  CAS  Google Scholar 

  41. Rajah R, Nunn SE, Herrick DJ, et al. Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. Am J Physiol 1996; 271 (6 Pt 1): L1014–22

    PubMed  CAS  Google Scholar 

  42. Schwingshackl A, Duszyk M, Brown N, et al. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha. J Allergy Clin Immunol 1999; 104(5): 983–9

    Article  PubMed  CAS  Google Scholar 

  43. Mautino G, Henriquet C, Jaffuel D, et al. Tissue inhibitor of metalloproteinase-1 levels in bronchoalveolar lavage fluid from asthmatic subjects. Am J Respir Crit Care Med 1999; 160(1): 324–30

    PubMed  CAS  Google Scholar 

  44. Zheng T, Zhu Z, Wang Z, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 2000; 106(9): 1081–93

    Article  PubMed  CAS  Google Scholar 

  45. Lim S, Roche N, Oliver BG, et al. Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers: regulation by interleukin-10. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1355–60

    PubMed  CAS  Google Scholar 

  46. Robinson SC, Scott KA, Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 2002; 32(2): 404–12

    Article  PubMed  CAS  Google Scholar 

  47. Kikuchi K, Kadono T, Furue M, et al. Tissue inhibitor of metalloproteinase 1 (TIMP-1) may be an autocrine growth factor in scleroderma fibroblasts. J Invest Dermatol 1997; 108(3): 281–4

    Article  PubMed  CAS  Google Scholar 

  48. Kikuchi K, Kubo M, Sato S, et al. Serum tissue inhibitor of metalloproteinases in patients with systemic sclerosis. J Am Acad Dermatol 1995; 33(6): 973–8

    Article  PubMed  CAS  Google Scholar 

  49. Bosse M, Chakir J, Rouabhia M, et al. Serum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am J Respir Crit Care Med 1999; 159(2): 596–602

    PubMed  CAS  Google Scholar 

  50. Hoshino M, Takahashi M, Takai Y, et al. Inhaled corticosteroids decrease subepithelial collagen deposition by modulation of the balance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in asthma. J Allergy Clin Immunol 1999; 104 (2 Pt 1): 356–63

    Article  PubMed  CAS  Google Scholar 

  51. Lee YC, Lee HB, Rhee YK, et al. The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma. Clin Exp Allergy 2001; 31(10): 1623–30

    Article  PubMed  CAS  Google Scholar 

  52. Nuovo GJ, MacConnell PB, Simsir A, et al. Correlation of the in situ detection of polymerase chain reaction-amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical carcinoma. Cancer Res 1995; 55(2): 267–75

    PubMed  CAS  Google Scholar 

  53. Kallakury BV, Karikehalli S, Haholu A, et al. Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res 2001; 7(10): 3113–9

    PubMed  CAS  Google Scholar 

  54. O-charoenrat P, Rhys-Evans PH, Eccles SA. Expression of matrix metalloproteinases and their inhibitors correlates with invasion and metastasis in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2001; 127(7): 813–20

    PubMed  CAS  Google Scholar 

  55. Giannelli G, Bergamini C, Marinosci F, et al. Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int J Cancer 2002; 97(4): 425–31

    Article  PubMed  CAS  Google Scholar 

  56. Yoshizaki T, Maruyama Y, Sato H, et al. Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int J Cancer 2001; 95(1): 44–50

    Article  PubMed  CAS  Google Scholar 

  57. Levitt NC, Eskens FA, O’Byrne KJ, et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023A), in patients with advanced solid cancer. Clin Cancer Res 2001; 7(7): 1912–22

    PubMed  CAS  Google Scholar 

  58. Nemunaitis J, Cox J, Hays S, et al. Prognostic role of K-ras in patients with progressive colon cancer who received treatment with Marimastat (BB2516). Cancer Invest 2000; 18(3): 185–90

    Article  PubMed  CAS  Google Scholar 

  59. Kumagai K, Ohno I, Okada S, et al. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol 1999; 162(7): 4212–9

    PubMed  CAS  Google Scholar 

  60. Lee YC, Song CH, Lee HB, et al. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J Allergy Clin Immunol 2001; 108(6): 1021–6

    Article  PubMed  CAS  Google Scholar 

  61. Trifilieff A, Walker C, Keller T, et al. Pharmacological profile ofPKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in models of airway inflammation. Br J Pharmacol 2002; 135(7): 1655–64

    Article  PubMed  CAS  Google Scholar 

  62. Snider GL, Kleinerman J, Thurlbeck WM, et al. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 1985; 132(1): 182–5

    Google Scholar 

  63. Laurell CB, Erikson S. The electrophoretical alpha-1-globulin pattern of serum in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15: 132–40

    CAS  Google Scholar 

  64. Janoff A, Sloan B, Weinbaum G, et al. Experimental emphysema induced with purified human neutrophil elastase: tissue localization of the instilled protease. Am Rev Respir Dis 1977; 115(3): 461–78

    PubMed  CAS  Google Scholar 

  65. Finlay GA, O’Donnell MD, O’Connor CM, et al. Elastin and collagen remodeling in emphysema: a scanning electron microscopy study. Am J Pathol 1996; 149(4): 1405–15

    PubMed  CAS  Google Scholar 

  66. D’Armiento J, Dalai SS, Okada Y, et al. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 1992; 71(6): 955–61

    Article  PubMed  Google Scholar 

  67. Hautamaki RD, Kobayashi DK, Senior RM, et al. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997; 277(5334): 2002–4

    Article  PubMed  CAS  Google Scholar 

  68. Meshi B, Vitalis TZ, Ionescu D, et al. Emphysematous lung destruction by cigarette smoke: the effects of latent adenoviral infection on the lung inflammatory response. Am J Respir Cell Mol Biol 2002; 26(1): 52–7

    PubMed  CAS  Google Scholar 

  69. Reilly Jr JJ, Chen P, Sailor LZ, et al. Cigarette smoking induces an elastolytic cysteine proteinase in macrophages distinct from cathepsin L. Am J Physiol 1991; 261 (2 Pt 1): L41–8

    PubMed  CAS  Google Scholar 

  70. Maestrelli P, Saetta M, Di Stefano A, et al. Comparison of leukocyte counts in sputum, bronchial biopsies, and bronchoalveolar lavage. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 1926–31

    PubMed  CAS  Google Scholar 

  71. Brown DM, Brown GM, Macnee W, et al. Activated human peripheral blood neutrophils produce epithelial injury and fibronectin breakdown in vitro. Inflammation 1992; 16(1): 21–30

    Article  PubMed  CAS  Google Scholar 

  72. Segura-Valdez L, Pardo A, Gaxiola M, et al. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000; 117(3): 684–94

    Article  PubMed  CAS  Google Scholar 

  73. Finlay GA, O’Driscoll LR, Russell KJ, et al. Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 1997; 156(1): 240–7

    PubMed  CAS  Google Scholar 

  74. Cataldo D, Munaut C, Noel A, et al. MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2000; 123(3): 259–67

    Article  PubMed  CAS  Google Scholar 

  75. Bakowska J, Adamson IY. Collagenase and gelatinase activities in bronchoalveolar lavage fluids during bleomycin-induced lung injury. J Pathol 1998; 185(3): 319–23

    Article  PubMed  CAS  Google Scholar 

  76. Minematsu N, Nakamura H, Tateno H, et al. Genetic polymorphism in matrix metalloproteinase-9 and pulmonary emphysema. Biochem Biophys Res Commun 2001; 289(1): 116–9

    Article  PubMed  CAS  Google Scholar 

  77. Ofulue AF, Ko M, Abboud RT. Time course of neutrophil and macrophage elastinolytic activities in cigarette smoke-induced emphysema. Am J Physiol 1998; 275 (6 Pt 1): L1134–44

    PubMed  CAS  Google Scholar 

  78. Imai K, Dalai SS, Chen ES, et al. Human collagenase (matrix metalloproteinase-1) expression in the lungs of patients with emphysema. Am J Respir Crit Care Med 2001; 163 (3 Pt 1): 786–91

    PubMed  CAS  Google Scholar 

  79. Cawston T, Billington C, Cleaver C, et al. The regulation of MMPs and TIMPs in cartilage turnover. Ann N Y Acad Sci 1999; 878: 120–9

    Article  PubMed  CAS  Google Scholar 

  80. Frankenberger M, Hauck RW, Frankenberger B, et al. All trans-retinoic acid selectively down-regulates matrix metalloproteinase-9 (MMP-9) and up-regulates tissue inhibitor of metalloproteinase-1 (TIMP-1) in human bronchoalveolar lavage cells. Mol Med 2001; 7(4): 263–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There was no financial support in the preparation of this manuscript and no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryujiro Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, R., Miyazaki, Y., Takagi, K. et al. Matrix Metalloproteinases in the Pathogenesis of Asthma and COPD. Treat Respir Med 3, 17–27 (2004). https://doi.org/10.2165/00151829-200403010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200403010-00003

Keywords

Navigation