Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man

Xenobiotica. 1999 Mar;29(3):297-310. doi: 10.1080/004982599238687.

Abstract

1. Pharmacokinetics were studied in mouse, rat, rabbit, dog and man after single intravenous and/or oral doses of sildenafil or [14C]-sildenafil (Viagra). 2. In man, absorption from the gastrointestinal tract was essentially complete. With the exception of male rat, Tmax occurred at approximately 1 h or less. Bioavailability was attenuated by pre-systemic hepatic metabolism in all species. 3. The volume of distribution was similar in rodents and humans (1-2 l/kg) but was greater in dog (5.2 l/kg), due to lower plasma protein binding (84 versus 94-96% respectively). 4. High clearance was the principal determinant of short elimination half-lives in rodents (0.4-1.3 h), whereas moderate clearance in dog and man resulted in longer half-lives (6.1 and 3.7 h respectively). Clearances were in agreement with in vitro metabolism rates by liver microsomes from the various species. 5. After single oral or intravenous doses of [14C]-sildenafil, the majority of radioactivity was excreted in the faeces of all species. No unchanged drug was detected in the excreta of man. 6. Five principal pathways of metabolism in all species were piperazine N-demethylation, pyrazole N-demethylation, loss of a two-carbon fragment from the piperazine ring (N,N'-deethylation), oxidation of the piperazine ring and aliphatic hydroxylation. Additional metabolites arose through combinations of these pathways. 7. Sildenafil was the major component detected in human plasma. Following oral doses, AUC(infinity) for the piperazine N-desmethyl and piperazine N,N'-desethyl metabolites were 55 and 27% that of parent compound respectively.

Publication types

  • Clinical Trial

MeSH terms

  • Administration, Oral
  • Animals
  • Area Under Curve
  • Biological Availability
  • Blood Proteins / metabolism
  • Carbon Radioisotopes
  • Chromatography, High Pressure Liquid / methods
  • Dogs
  • Feces / chemistry
  • Female
  • Half-Life
  • Humans
  • Injections, Intravenous
  • Male
  • Mice
  • Mice, Inbred Strains
  • Microsomes, Liver / metabolism
  • Middle Aged
  • Phosphodiesterase Inhibitors / metabolism*
  • Phosphodiesterase Inhibitors / pharmacokinetics*
  • Piperazines / administration & dosage
  • Piperazines / analysis
  • Piperazines / metabolism*
  • Piperazines / pharmacokinetics*
  • Purines
  • Pyrimidinones / analysis
  • Pyrimidinones / pharmacokinetics
  • Rabbits
  • Rats
  • Rats, Sprague-Dawley
  • Sildenafil Citrate
  • Species Specificity
  • Sulfones
  • Urine / chemistry

Substances

  • Blood Proteins
  • Carbon Radioisotopes
  • Phosphodiesterase Inhibitors
  • Piperazines
  • Purines
  • Pyrimidinones
  • Sulfones
  • UK 103320
  • Sildenafil Citrate