Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures

J Pharm Sci. 2000 Aug;89(8):1085-96. doi: 10.1002/1520-6017(200008)89:8<1085::aid-jps13>3.0.co;2-n.

Abstract

A fast-gradient high-performance liquid chromatographic (HPLC) method has been suggested to characterize the interactions of drugs with an immobilized artificial membrane (IAM). With a set of standards, the gradient retention times can be converted to Chromatographic Hydrophobicity Index values referring to IAM chromatography (CHI(IAM)) that approximates an acetonitrile concentration with which the equal distribution of compound can be achieved between the mobile phase and IAM. The CHI(IAM) values are more suitable for interlaboratory comparison and for high throughput screening of new molecular entities than the log k(IAM) values (isocratic retention factor on IAM). The fast-gradient method has been validated against the isocratic log k(IAM) values using the linear free energy relationship solvation equations based on the data from 48 compounds. The compound set was selected to provide a wide range and the least cross-correlation between the molecular descriptors in the solvation equation: (2) where SP is a solute property (e.g., logarithm of partition coefficients, reversed-phase (RP)-HPLC retention parameters, such as log k, log k(w), etc.) and the explanatory variables are solute descriptors as follows: R(2) is an excess molar refraction that can be obtained from the measured refractive index of a compound, pi(2)(H) is the solute dipolarity/polarizability, summation operatoralpha(2)(H) and summation operatorbeta(2)(0) are the solute overall or effective hydrogen-bond acidity and basicity, respectively, and V(x) is the McGowan characteristic volume (in cm(3)/100 mol) that can be calculated for any solute simply from molecular structure using a table of atomic constants. It was found that the relative constants of the solvation equation were very similar for the CHI(IAM) and for the log k(IAM). The IAM lipophilicity scale was quite similar to the octanol/water lipophilicity scale for neutral compounds. The effect of charge on the interaction with IAM was studied by varying the mobile phase pH.

Publication types

  • Comparative Study

MeSH terms

  • Chromatography, High Pressure Liquid*
  • Hydrogen-Ion Concentration
  • Membranes, Artificial*
  • Solubility

Substances

  • Membranes, Artificial