Oestrogen receptor function at classical and alternative response elements

Novartis Found Symp. 2000:230:20-6; discussion 27-40. doi: 10.1002/0470870818.ch3.

Abstract

The oestrogen receptor (ER), bound to classical response elements (EREs) in the promoter of target genes, activates transcription by recruiting coactivator proteins. We will describe structural studies that show that oestrogens allow the formation of a hydrophobic cleft on the surface of the ER that serves as a docking site for coactivators. Anti-oestrogens displace part of the receptor, which then occludes the site, blocking coactivator access. In addition to activating at classical EREs, the ER activates transcription at alternative elements such as AP-1 sites. These bind the Jun/Fos proteins but not ER. Interestingly both oestrogen and tamoxifen activate transcription at AP-1 sites. We propose a mechanism whereby oestrogen and anti-oestrogen allow ER to activate transcription from alternative response elements. ER binds to the coactivators, CBP and GRIP1, that have been recruited by Jun/Fos and through this contact 'triggers' these coactivators into full activity. In this circumstance the ER is part of the coactivator complex for Jun/Fos.

Publication types

  • Review

MeSH terms

  • Animals
  • Estrogen Antagonists / metabolism
  • Ligands
  • Promoter Regions, Genetic*
  • Protein Structure, Tertiary
  • Receptors, Estrogen / metabolism*
  • Receptors, Estrogen / physiology
  • Response Elements*
  • Tamoxifen / metabolism
  • Transcription Factor AP-1 / metabolism*

Substances

  • Estrogen Antagonists
  • Ligands
  • Receptors, Estrogen
  • Transcription Factor AP-1
  • Tamoxifen