Evidence for the involvement of purinergic signalling in the control of respiration

Neuroscience. 2001;107(3):481-90. doi: 10.1016/s0306-4522(01)00363-3.

Abstract

The ventrolateral medulla has a critical role in the generation and patterning of respiration via an extensive network of respiratory neurones. We have investigated the effects of activating purinergic P2 receptors within the ventrolateral medulla of the anaesthetised rat on the overall pattern of respiratory activity. In addition, using immunohistochemical techniques, we have identified the subtypes of P2X receptors in the ventrolateral medulla. Unilateral microinjection of ATP into the ventrolateral medulla reduced in a dose-dependent manner, or abolished, resting phrenic nerve discharge recorded as an indication of central inspiratory drive. ATP also elicited increases in blood pressure and variable changes in heart rate. These effects were mimicked by microinjection of the P2X receptor agonist alpha,beta-methylene ATP into the ventrolateral medulla. Whilst microinjection of suramin, a P2 receptor antagonist, had no effect on resting cardiorespiratory variables it blocked the respiratory and cardiovascular effects of ATP microinjected into the ventrolateral medulla. Immunohistochemical staining using IgG antibodies showed that P2X1, P2X2, P2X5 and P2X6, but not P2X3, P2X4 or receptor subunits were localised in the rostral ventrolateral medulla.Our results indicate that several P2X receptor subtypes are localised within areas of the ventrolateral medulla that are important for cardiorespiratory control (including the pre-Bötzinger and Bötzinger complexes), and that activation of these receptors can have profound effects on both the cardiovascular and the respiratory networks. Our pharmacological data suggest that different P2X subunits in this region may co-assemble to form hetero-oligomeric assemblies as well as homomultimers within this region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / administration & dosage
  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Cardiovascular System / drug effects
  • Male
  • Medulla Oblongata / physiology
  • Microinjections
  • Protein Isoforms / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Purinergic P2 / physiology*
  • Receptors, Purinergic P2X
  • Respiratory Physiological Phenomena*
  • Signal Transduction / physiology*

Substances

  • Protein Isoforms
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2X
  • Adenosine Triphosphate
  • alpha,beta-methyleneadenosine 5'-triphosphate