Mutation in a protein kinase C phosphorylation site of the 5-HT1A receptor preferentially attenuates Ca2+ responses to partial as opposed to higher-efficacy 5-HT1A agonists

Neuropharmacology. 2003 Jun;44(7):873-81. doi: 10.1016/s0028-3908(03)00097-2.

Abstract

The Thr(149)Ala mutation in a putative protein kinase C phosphorylation site of the 5-HT(1A) receptor's second intracellular loop has been shown to affect the closing of Ca(2+) channels and Ca(2+) mobilisation without interfering with the inhibitory cAMP pathway (Mol Pharmacol 52 (1997) 164). Here, the Ca(2+) responses for a series of 5-HT(1A) agonists were compared between the wild-type (wt) and mutant Thr(149)Ala 5-HT(1A) receptor as part of a fusion protein containing a G(alpha)(15) protein. Neither the mutation nor the fusion process modified the [(3)H]WAY 100635-based ligand binding profile of the fusion proteins as compared to the wt 5-HT(1A) receptor protein. Whereas at the wt 5-HT(1A) receptor, 5-HT induced a Ca(2+) response in CHO-K1 cells via endogenous G(i/o) proteins, the Ca(2+) response to 5-HT at the mutant Thr(149)Ala 5-HT(1A) receptor was fully dependent on either the co-expression or the fusion to a recombinant G(alpha)(15) protein. Buspirone, flesinoxan and 8-OH-DPAT produced a graded partial response (26 to 62%) at the wt 5-HT(1A):G(alpha)(15) fusion protein; F 13640, 5-CT and F 14679 behaved as higher-efficacy agonists with maximal Ca(2+) responses similar to 5-HT. The maximal Ca(2+) responses at the mutant Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein were significantly attenuated for flesinoxan and 8-OH-DPAT (-45 and -36%, respectively); the response to the other 5-HT agonists was not significantly affected. A similar effect was observed upon treatment with phorbol 12-myristate 13-acetate at the Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein. In conclusion, the amplitude of the Ca(2+) responses induced by partial, but not that to fuller 5-HT(1A) receptor agonists, is affected by the Thr(149)Ala mutation of the 5-HT(1A):G(alpha)(15) fusion protein.

MeSH terms

  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Animals
  • CHO Cells
  • Calcium / physiology*
  • Cricetinae
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Heterotrimeric GTP-Binding Proteins / genetics
  • Humans
  • Ligands
  • Mutation / genetics*
  • Mutation / physiology*
  • Phosphorylation
  • Piperazines / pharmacology
  • Protein Kinase C / genetics*
  • Pyridines / pharmacology
  • Radioligand Assay
  • Receptors, Serotonin / drug effects
  • Receptors, Serotonin / genetics*
  • Receptors, Serotonin, 5-HT1
  • Serotonin Antagonists / pharmacology
  • Serotonin Receptor Agonists / pharmacology*
  • Tetradecanoylphorbol Acetate / pharmacology
  • Transfection

Substances

  • Ligands
  • Piperazines
  • Pyridines
  • Receptors, Serotonin
  • Receptors, Serotonin, 5-HT1
  • Serotonin Antagonists
  • Serotonin Receptor Agonists
  • flesinoxan
  • N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide
  • 8-Hydroxy-2-(di-n-propylamino)tetralin
  • Protein Kinase C
  • G protein alpha 16
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Heterotrimeric GTP-Binding Proteins
  • Tetradecanoylphorbol Acetate
  • Calcium