Putative roles of retinoblastoma protein in apoptosis

Apoptosis. 1997;2(1):5-18. doi: 10.1023/a:1026498820543.

Abstract

Cell numbers are regulated by a balance between processes of proliferation and apoptosis (programmed cell death). Proper regulation in a cell requires an accurate co-ordination between these two processes. Indeed, it has recently been found that dysregulation of cell cycle progression is essential for the initiation of apoptosis. Retinoblastoma protein (RB) is an important tumour suppressor and a cell cycle regulator. Most recent studies suggest that RB also plays a regulatory role in the process of apoptosis. During the onset of apoptosis, the hyperphosphorylated form of RB (p120/hyper) is converted to a hypophosphorylated form (p115/hypo), which is mediated by a specific protein-serine/ threonine phosphatase activity. The p115/hypo/RB may play an active role in the regulation of apoptosis. Accompanied by the endonucleosomal fragmentation of DNA, the newly formed p115/hypo/RB is immediately cleaved by a protease that has properties of the interleukin-1beta-converting enzyme family. By contrast, the unphosphorylated form of RB (p110/unphos) remains uncleaved during apoptosis. Further studies suggest that p110/unphos/RB functions as an inhibitor of apoptosis. Therefore, a balance between RB phosphatases and kinases and consequent RB phosphorylation status may be important for the determination of cellular fate.