The role of alpha-adrenoceptor mechanism(s) in morphine-induced conditioned place preference in female mice

Pharmacol Biochem Behav. 2004 May;78(1):135-41. doi: 10.1016/j.pbb.2004.03.004.

Abstract

It has been shown that the alpha-adrenergic system is involved in some effects of opioids, including analgesia and reward. Gender differences also exist between males and females in response to alpha-adrenergic agents. This study was designed to determine the effects of alpha-adrenoceptor agonists and antagonists on the acquisition or expression of morphine-induced conditioned place preference (CPP) in female mice. The experiments showed that subcutaneous injections of morphine (0.5-8 mg/kg) induced CPP in a dose-dependent manner in mice. Intrapritoneal administration of the alpha-1-adrenoceptor agonist, phenylephrine (0.03, 0.1 and 0.3 mg/kg), and alpha-2 adrenoceptor agonist, clonidine (0.0001, 0.0005 and 0.001 mg/kg), as well as alpha-1-adrenoceptor antagonist, prazosin (0.01, 0.05 and 0.1 mg/kg) or alpha-2 adrenoceptor antagonist, yohimbine (0.005, 0.01 and 0.05 mg/kg) did not induce motivational effects and also did not alter locomotor activity in the animals. In the second set of experiments, the drugs were used before testing on Day 5, to test their effects on the expression of morphine-induced CPP. Intrapritoneal administration of phenylephrine and clonidine decreased the expression of morphine-induced CPP. In contrast, after application of prazosin or yohimbine, the expression of morphine-induced CPP was increased. Administration of lower (0.03 mg/kg) and higher doses of phenylephrine (0.1 and 0.3 mg/kg) during acquisition of morphine CPP decreased and increased the morphine CPP, respectively. Similarly, the administration of prazosin and clonidine decreased while yohimbine increased the morphine CPP. It may be concluded that alpha-adrenoceptor mechanism(s) influence morphine-induced CPP in female mice.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Conditioning, Psychological / drug effects*
  • Conditioning, Psychological / physiology
  • Dose-Response Relationship, Drug
  • Female
  • Mice
  • Morphine / pharmacology*
  • Receptors, Adrenergic, alpha / physiology*

Substances

  • Receptors, Adrenergic, alpha
  • Morphine