Very fast empirical prediction and rationalization of protein pKa values

Proteins. 2005 Dec 1;61(4):704-21. doi: 10.1002/prot.20660.

Abstract

A very fast empirical method is presented for structure-based protein pKa prediction and rationalization. The desolvation effects and intra-protein interactions, which cause variations in pKa values of protein ionizable groups, are empirically related to the positions and chemical nature of the groups proximate to the pKa sites. A computer program is written to automatically predict pKa values based on these empirical relationships within a couple of seconds. Unusual pKa values at buried active sites, which are among the most interesting protein pKa values, are predicted very well with the empirical method. A test on 233 carboxyl, 12 cysteine, 45 histidine, and 24 lysine pKa values in various proteins shows a root-mean-square deviation (RMSD) of 0.89 from experimental values. Removal of the 29 pKa values that are upper or lower limits results in an RMSD = 0.79 for the remaining 285 pKa values.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acids / analysis
  • Hydrogen Bonding
  • Kinetics
  • Models, Molecular
  • Protein Conformation
  • Proteins / chemistry*
  • Proteins / metabolism*
  • Software

Substances

  • Amino Acids
  • Proteins