Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells

Neurotoxicology. 1991 Fall;12(3):519-28.

Abstract

N1E-115 mouse neuroblastoma cells have been reported to possess two types of voltage-sensitive calcium channels: Low voltage activated, rapidly inactivating T-type (type I) and high voltage activated, slowly inactivating L-type (type II). We studied the effects of acute in vitro exposure to inorganic lead on these calcium channels, using the whole-cell variant of patch clamping. Using salines with a high lead-buffering capacity, we found that both T-type and L-type channels are reversibly inhibited in a dose-dependent manner at free Pb2+ concentrations ranging from 20 nM to 14 microM. L-type channels are somewhat more sensitive to Pb2+ than T-type channels are (L-type: IC50 approx. 0.7 microM; T-type: IC50 approx. 1.3 microM). Both channels show small but significant inhibition (approx. 10%) at 20 nM free Pb2+. Pb2+ affects neither activation nor inactivation of T-type channels, but enhances inactivation of L-type channels at holding potentials around -60 to -40 mV. A peculiar phenomenon was observed in cells exposed to 2.3 microM free Pb2+. T-type channels were inhibited in all 20 cells studied. In 15 cells, L-type channels were also inhibited, but in the remaining 5 cells, current flow through L-type channels was enhanced by Pb2+ exposure.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium Channels / drug effects*
  • Lead / toxicity*
  • Mice
  • Neuroblastoma
  • Neurons / drug effects*
  • Tumor Cells, Cultured

Substances

  • Calcium Channels
  • Lead