Pim kinase-dependent inhibition of c-Myc degradation

Oncogene. 2008 Aug 14;27(35):4809-19. doi: 10.1038/onc.2008.123. Epub 2008 Apr 28.

Abstract

Pim kinases are found to be highly expressed in leukemia, lymphoma, prostate and pancreatic cancer. Bitransgenic mice overexpressing either Pim-1 or Pim-2 and c-Myc succumb to pre-B-cell lymphoma at a strikingly accelerated speed. Despite that Pim-1/Pim-2 has long been recognized as a strong synergistic partner with c-Myc in tumorigenesis, the mechanism underlying the synergism is still not well understood. Overexpression of Pim-1/Pim-2 kinase dramatically stabilizes c-Myc in vivo, and the stabilization is partially mediated by phosphorylation of c-Myc by Pim kinase on a novel site, Ser329. We provide evidence that Pim-2 is more efficient in directly phosphorylating c-Myc Ser329 to stabilize c-Myc. In contrast, we find that Pim-1 is more effective in mediating a decrease in c-Myc Thr58 phosphorylation and an increase in c-Myc Ser62 phosphorylation than in phosphorylating Ser329. In either case, through stabilizing c-Myc, Pim-1/Pim-2 kinases enhance the transcriptional activity of c-Myc. Also knocking down either Pim-1 or Pim-2 dramatically decreases the endogenous levels of c-Myc and thus, its transcriptional activity. Finally, coexpression of the Pim kinases and c-Myc enhances the transforming activity of c-Myc as does the phosphomimic mutant of c-Myc on Ser329. We conclude that these findings appear to explain at least in part the mechanism underlying the synergism between the Pim kinases and c-Myc in tumorigenesis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Genes, myc*
  • Hydrolysis
  • Mice
  • Mice, Transgenic
  • Phosphorylation
  • Proto-Oncogene Proteins c-pim-1 / metabolism*

Substances

  • Proto-Oncogene Proteins c-pim-1
  • proto-oncogene proteins pim