Methods for the analysis of inositol phosphates

Anal Biochem. 1989 Dec;183(2):199-209. doi: 10.1016/0003-2697(89)90468-5.

Abstract

Interest in the inositol phospholipids was stimulated by the simultaneous discoveries that the products of hydrolysis of these lipids could serve as messengers to activate to synergistic signaling pathways in hormonally responsive cells, namely, inositol 1,4,5-trisphosphate which causes the release of Ca2+ from intracellular stores and diacylglycerol which promotes the activation of protein kinase C. At the same time, Berridge and co-workers introduced relatively simple approaches to study the inositol phospholipid cycle. These included the use of [3H]inositol to label the inositol metabolites, all of which are confined to this cycle, and of Li+ to decrease the rate of degradation of the inositol phosphates. Water-soluble inositol phosphates and chloroform-soluble inositol phospholipids could then be separated by solvent partition and the inositol phosphates further separated by use of an anion-exchange resin. However, the subsequent application of high-performance liquid chromatography as a separation technique indicated the existence of many isomers of the inositol phosphates formed by different pathways of dephosphorylation and phosphorylation. Mapping of these metabolic pathways may be substantially complete, but novel pathways may still be discovered. We review both old and new methods of analysis of the inositol phosphates for the measurement of mass and radioactivity. Although the complexity of the cycle sometimes demands the use of sophisticated methods of separation and rigorous identification, older and inexpensive methods may still be useful for some purposes.

Publication types

  • Review

MeSH terms

  • Animals
  • Inositol Phosphates / analysis*
  • Methods

Substances

  • Inositol Phosphates