Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene

Nature. 1996 Oct 31;383(6603):819-23. doi: 10.1038/383819a0.

Abstract

Despite tremendous efforts in the search for safe, efficacious and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Opioids exert their pharmacological actions through three opioid-receptor classes, mu, delta and kappa, whose genes have been cloned. Genetic approaches are now available to delineate the contribution of each receptor in opioid function in vivo. Here we disrupt the mu-opioid-receptor gene in mice by homologous recombination and find that there are no overt behavioural abnormalities or major compensatory changes within the opioid system in these animals. Investigation of the behavioural effects of morphine reveals that a lack of mu receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. We observed no behavioural responses related to delta- or kappa-receptor activation with morphine, although these receptors are present and bind opioid ligands. We conclude that the mu-opioid-receptor gene product is the molecular target of morphine in vivo and that it is a mandatory component of the opioid system for morphine action.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics / adverse effects
  • Analgesics / metabolism
  • Analgesics / pharmacology*
  • Animals
  • Behavior, Animal
  • Cell Line
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Enkephalins / metabolism
  • Gene Deletion
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Morphine / adverse effects
  • Morphine / metabolism
  • Morphine / pharmacology*
  • Morphine Dependence / metabolism
  • Narcotics / adverse effects
  • Narcotics / metabolism
  • Narcotics / pharmacology*
  • Receptors, Opioid, delta / metabolism
  • Receptors, Opioid, kappa / metabolism
  • Receptors, Opioid, mu / genetics
  • Receptors, Opioid, mu / metabolism*
  • Reward
  • Substance Withdrawal Syndrome / metabolism

Substances

  • Analgesics
  • Enkephalins
  • Narcotics
  • Receptors, Opioid, delta
  • Receptors, Opioid, kappa
  • Receptors, Opioid, mu
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Morphine