Geldanamycin, a heat shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus

Biochemistry. 1997 Jun 24;36(25):7776-85. doi: 10.1021/bi970648x.

Abstract

When they are translated, steroid receptors are assembled into a multiprotein complex containing hsp90, p23, an immunophilin, and often some hsp70. Some of the receptors, such as that for progesterone, have nuclear localization signals that are functional in the absence of hormone, and they move into the nucleus where they exist in the same multiprotein heterocomplex with hsp90. Other receptors, such as the glucocorticoid receptor, are localized predominantly in the cytoplasm in the absence of hormone and move into the nucleus in a hormone-dependent fashion. We have previously proposed that hsp90 and the immunophilin play a role in receptor trafficking [Pratt, W. B. (1993) J. Biol. Chem. 268, 21455-21458]. In this work, we show that treatment of L cells with geldanamycin, a benzoquinone ansamycin that binds to hsp90 and disrupts its function, impedes dexamethasone-dependent trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Because geldanamycin treatment of hormone-free cells causes a rapid loss of steroid binding activity, receptors were prebound with dexamethasone by incubating cells with hormone at 0 degrees C prior to shifting the temperature to 37 degrees C for 20 min to permit receptor transformation and translocation in the presence or absence of geldanamycin. Geldanamycin does not cause steroid to dissociate from prebound receptors, and it does not inhibit hormone-mediated receptor transformation assayed by conversion to the DNA-binding state. However, as reported previously for the progesterone receptor, geldanamycin blocks assembly of the glucocorticoid receptor-hsp90 heterocomplex at an intermediate state of assembly where the receptor is bound to hsp70 and p60, both of which are required components in the assembly mechanism. Our observations support the proposal that dynamic association of receptors with hsp90 is required for receptor translocation from the cytoplasm to the nucleus.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / pharmacology*
  • Benzoquinones
  • Biological Transport
  • Cell Line
  • Cell Nucleus / drug effects*
  • Cell Nucleus / metabolism
  • Cytoplasm / drug effects*
  • Cytoplasm / metabolism
  • HSP90 Heat-Shock Proteins / metabolism*
  • Lactams, Macrocyclic
  • Mice
  • Protein Binding
  • Quinones / pharmacology*
  • Receptors, Glucocorticoid / metabolism*

Substances

  • Antibiotics, Antineoplastic
  • Benzoquinones
  • HSP90 Heat-Shock Proteins
  • Lactams, Macrocyclic
  • Quinones
  • Receptors, Glucocorticoid
  • geldanamycin