G protein mechanisms: insights from structural analysis

Annu Rev Biochem. 1997:66:639-78. doi: 10.1146/annurev.biochem.66.1.639.

Abstract

This review is concerned with the structures and mechanisms of a superfamily of regulatory GTP hydrolases (G proteins). G proteins include Ras and its close homologs, translation elongation factors, and heterotrimeric G proteins. These proteins share a common structural core, exemplified by that of p21ras (Ras), and significant sequence identity, suggesting a common evolutionary origin. Three-dimensional structures of members of the G protein superfamily are considered in light of other biochemical findings about the function of these proteins. Relationships among G protein structures are discussed, and factors contributing to their low intrinsic rate of GTP hydrolysis are considered. Comparison of GTP- and GDP-bound conformations of G proteins reveals how specific contacts between the gamma-phosphate of GTP and the switch II region stabilize potential effector-binding sites and how GTP hydrolysis results in collapse (or reordering) of these surfaces. A GTPase-activating protein probably binds to and stabilizes the conformation of its cognate G protein that recognizes the transition state for hydrolysis, and may insert a catalytic residue into the G protein active site. Inhibitors of nucleotide release, such as the beta gamma subunit of a heterotrimeric G protein, bind selectively to and stabilize the GDP-bound state. Release factors, such as the translation elongation factor, Ts, also recognize the switch regions and destabilize the Mg(2+)-binding site, thereby promoting GDP release. G protein-coupled receptors are expected to operate by a somewhat different mechanism, given that the GDP-bound form of many G protein alpha subunits does not contain bound Mg2+.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • GTP-Binding Proteins / chemistry
  • GTP-Binding Proteins / metabolism
  • GTP-Binding Proteins / physiology*
  • Guanine Nucleotides / metabolism
  • Humans
  • Protein Binding
  • Protein Structure, Tertiary

Substances

  • Guanine Nucleotides
  • GTP-Binding Proteins