Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5

Lloyd Wei Tat Tang, Ravi Kumar Verma, Ren Ping Yong, Xin Li, Lili Wang, Qingsong Lin, Hao Fan and Eric Chun Yong Chan
Molecular Pharmacology September 2021, 100 (3) 224-236; DOI: https://doi.org/10.1124/molpharm.121.000256
Lloyd Wei Tat Tang
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ravi Kumar Verma
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ren Ping Yong
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xin Li
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lili Wang
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qingsong Lin
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hao Fan
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Chun Yong Chan
Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5—its highly homologous counterpart—is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F′ loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent Vmax increased and Km decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and β of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations.

SIGNIFICANCE STATEMENT Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition.

Footnotes

    • Received February 4, 2021.
    • Accepted June 21, 2021.
  • ↵1 L.W.T.T. and R.K.V contributed equally to the work.

  • This work is supported by the Agency for Science, Technology and Research (A*STAR) Industry Alignment Fund–Pre-Positioning (IAF-PP) Funding [Grant H18/01/a0/C14] provided to H.F and E.C.Y.C and the National University Heart Centre Singapore (NUHCS) Cardiovascular Research Institute (CVRI)–Core Fund [Grant NUHSRO/2019/082/Core] and SCEPTRE CG Seed Grant [Grant NMRC/CG/M008/2017] provided to E.C.Y.C. L.W.T.T is supported by the National University of Singapore (NUS) President’s Graduate Fellowship (PGF).

  • The authors declare that they have no conflicts of interest with the contents of this article.

  • https://doi.org/10.1124/molpharm.121.000256.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2021 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 100 (3)
Molecular Pharmacology
Vol. 100, Issue 3
1 Sep 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Differential Interactions between Benzbromarone and CYP3A

Lloyd Wei Tat Tang, Ravi Kumar Verma, Ren Ping Yong, Xin Li, Lili Wang, Qingsong Lin, Hao Fan and Eric Chun Yong Chan
Molecular Pharmacology September 1, 2021, 100 (3) 224-236; DOI: https://doi.org/10.1124/molpharm.121.000256

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Differential Interactions between Benzbromarone and CYP3A

Lloyd Wei Tat Tang, Ravi Kumar Verma, Ren Ping Yong, Xin Li, Lili Wang, Qingsong Lin, Hao Fan and Eric Chun Yong Chan
Molecular Pharmacology September 1, 2021, 100 (3) 224-236; DOI: https://doi.org/10.1124/molpharm.121.000256
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Anti-aromatase activity of exemestane phase II metabolites
  • α-Conotoxin Binding Site on the GABAB Receptor
  • Upacicalcet binds to the amino acid binding site of CaSR
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics