Abstract
Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson’s disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter’s substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators.
SIGNIFICANCE STATEMENT We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.
Footnotes
- Received August 24, 2021.
- Accepted December 3, 2021.
This work was supported by the National Institutes of Health [Grants NIH-MH106912 and NIH-MH121453 to O.V.M. and P41 GM103712 to I.B.] and the Community Foundation of Palm Beach County to R.D.B.
The authors declare the following competing financial interest(s): KM822 and its analogs are listed in the US Patent 9616065, with O.V.M. and J.M.S. as named inventors. All other authors have no actual or perceived conflicts of interest with the contents of this article.
↵1 O.R. and S.A. contributed equally to this work.
- Copyright © 2022 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|