Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleEmerging Concepts

Targeting Circuit Abnormalities in Neurodegenerative Disease

Sharan Ram Srinivasan
Molecular Pharmacology January 2023, 103 (1) 38-44; DOI: https://doi.org/10.1124/molpharm.122.000563
Sharan Ram Srinivasan
Department of Neurology, University of Michigan, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sharan Ram Srinivasan
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Despite significant improvement in our ability to diagnose both common and rare neurodegenerative diseases and understand their underlying biologic mechanisms, there remains a disproportionate lack of effective treatments, reflecting the complexity of these disorders. Successfully advancing novel treatments for neurodegenerative disorders will require reconsideration of traditional approaches, which to date have focused largely on specific disease proteins or cells of origin. This article proposes reframing these diseases as conditions of dysfunctional circuitry as a complement to ongoing efforts. Specifically reviewed is how aberrant spiking is a common downstream mechanism in numerous neurodegenerative diseases, often driven by dysfunction in specific ion channels. Surgical modification of this electrical activity via deep brain stimulation is already an approved modality for many of these disorders. Therefore, restoring proper electrical activity by targeting these channels pharmacologically represents a viable strategy for intervention, not only for symptomatic management but also as a potential disease-modifying therapy. Such an approach is likely to be a promising route to treating these devastating disorders, either as monotherapy or in conjunction with current drugs.

SIGNIFICANCE STATEMENT Despite extensive research and improved understanding of the biology driving neurodegenerative disease, there has not been a concomitant increase in approved therapies. Accordingly, it is time to shift our perspective and recognize these diseases also as disorders of circuitry to further yield novel drug targets and new interventions. An approach focused on treating dysfunctional circuitry has the potential to reduce or reverse patient symptoms and potentially modify disease course.

Footnotes

    • Received May 31, 2022.
    • Accepted October 24, 2022.
  • Dr. Srinivasan was funded by National Institutes of Health [NINDS Grant R25NS089450-06].

  • The author declares no relevant financial conflicts of interest.

  • dx.doi.org/10.1124/molpharm.122.000563.

  • Copyright © 2022 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 103 (1)
Molecular Pharmacology
Vol. 103, Issue 1
1 Jan 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Targeting Circuit Abnormalities in Neurodegenerative Disease
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleEmerging Concepts

Pharmacological Deep Brain Stimulation for Neurodegeneration

Sharan Ram Srinivasan
Molecular Pharmacology January 1, 2023, 103 (1) 38-44; DOI: https://doi.org/10.1124/molpharm.122.000563

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleEmerging Concepts

Pharmacological Deep Brain Stimulation for Neurodegeneration

Sharan Ram Srinivasan
Molecular Pharmacology January 1, 2023, 103 (1) 38-44; DOI: https://doi.org/10.1124/molpharm.122.000563
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Conclusion
    • Acknowledgments
    • Authorship Contribution
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cryo-EM Reveals KATP Drug Binding Sites
  • Extrachromosomal circular DNAs and CRISPR-Cas9 System
Show more Emerging Concepts

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics