Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell–Derived Neurons

Melissa J. Asher, Hannah M. McMullan, Ao Dong, Yulong Li and Stanley A. Thayer
Molecular Pharmacology February 2023, 103 (2) 100-112; DOI: https://doi.org/10.1124/molpharm.122.000555
Melissa J. Asher
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hannah M. McMullan
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ao Dong
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yulong Li
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stanley A. Thayer
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stanley A. Thayer
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development. Despite recent interest in cannabinoid-based treatments, few preclinical studies are conducted in human systems. Human induced pluripotent stem cells (hiPSCs) provide one possible solution to this issue. However, it is not known if these cells have a fully functional ECS. Here, we show that hiPSC-derived neuron/astrocyte cultures exhibit a complete ECS. Using Ca2+ imaging and a genetically encoded endocannabinoid sensor, we demonstrate that they not only respond to exogenously applied cannabinoids but also produce and metabolize endocannabinoids. Synaptically driven [Ca2+]i spiking activity was inhibited (EC50 = 48 ± 13 nM) by the efficacious agonist [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol [1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] (Win 55,212-2) and by the endogenous ligand 2-arachidonoyl glycerol (2-AG; EC50 = 2.0 ± 0.6 µm). The effects of Win 55212-2 were blocked by a CB1 receptor-selective antagonist. Δ9-Tetrahydrocannabinol acted as a partial agonist, maximally inhibiting synaptic activity by 47 ± 14% (EC50 = 1.4 ± 1.9 µm). Carbachol stimulated 2-AG production in a manner that was independent of Ca2+ and blocked by selective inhibition of diacylglycerol lipase. 2-AG returned to basal levels via a process mediated by monoacylglycerol lipase as indicated by slowed recovery in cultures treated with 4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester (JZL 184). Win 55,212-2 markedly desensitized CB1 receptor function following a 1-day exposure, whereas desensitization was incomplete following 7-day treatment with JZL 184. This human cell culture model is well suited for functional analysis of the ECS and as a platform for drug development.

SIGNIFICANCE STATEMENT Despite known differences between the human response to cannabinoids and that of other species, an in vitro human model demonstrating a fully functional endocannabinoid system has not been described. Human induced pluripotent stem cells (hiPSCs) can be obtained from skin samples and then reprogrammed into neurons for use in basic research and drug screening. Here, we show that hiPSC-derived neuronal cultures exhibit a complete endocannabinoid system suitable for mechanistic studies and drug discovery.

Footnotes

    • Received May 6, 2022.
    • Accepted October 24, 2022.
  • This work was made possible by National Institutes of Health grants from the National Institute on Drug Abuse [Grant DA07304] (to S.A.T.) and the National Institute of Mental Health [Grant MH122193] (to S.A.T.) and support from the Viral Vector and Cloning Core/Viral Innovation Core [Grant P30 DA048742-01A1].

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/molpharm.122.000555.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 103 (2)
Molecular Pharmacology
Vol. 103, Issue 2
1 Feb 2023
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell–Derived Neurons
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

eCB Signaling System in hiPSC-Derived Neuronal Cultures

Melissa J. Asher, Hannah M. McMullan, Ao Dong, Yulong Li and Stanley A. Thayer
Molecular Pharmacology February 1, 2023, 103 (2) 100-112; DOI: https://doi.org/10.1124/molpharm.122.000555

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

eCB Signaling System in hiPSC-Derived Neuronal Cultures

Melissa J. Asher, Hannah M. McMullan, Ao Dong, Yulong Li and Stanley A. Thayer
Molecular Pharmacology February 1, 2023, 103 (2) 100-112; DOI: https://doi.org/10.1124/molpharm.122.000555
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics