Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Licochalcone Mediates the Pain Relief by Targeting the Voltage-Gated Sodium Channel

Qianru Zhao, Xu Zhang, Siru Long, Shaobing Wang, Hui Yu, Yongsheng Zhou, Yi Li, Lu Xue, Yan Hu and Shijin Yin
Molecular Pharmacology October 2023, 104 (4) 133-143; DOI: https://doi.org/10.1124/molpharm.122.000658
Qianru Zhao
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xu Zhang
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siru Long
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shaobing Wang
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hui Yu
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yongsheng Zhou
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yi Li
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lu Xue
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yan Hu
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shijin Yin
Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Q.Z., X.Z., S.L., S.W., H.Y., Y.Z., Y.H., S.Y.) and Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, People’s Republic of China (Y.L., L.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Licorice is a traditional Chinese medicine and recorded to have pain relief effects in national pharmacopoeia, but the mechanisms behind these effects have not been fully explored. Among the hundreds of compounds in licorice, licochalcone A (LCA) and licochalcone B (LCB) are two important components belonging to the chalcone family. In this study, we compared the analgesic effects of these two licochalcones and the molecular mechanisms. LCA and LCB were applied in cultured dorsal root ganglion (DRG) neurons, and the voltage-gated sodium (NaV) currents and action potentials were recorded. The electrophysiological experiments showed that LCA can inhibit NaV currents and dampen excitabilities of DRG neurons, whereas LCB did not show inhibition effect on NaV currents. Because the NaV1.7 channel can modulate Subthreshold membrane potential oscillations in DRG neuron, which can palliate neuropathic pain, HEK293T cells were transfected with NaV1.7 channel and recorded with whole-cell patch clamp. LCA can also inhibit NaV1.7 channels exogenously expressed in HEK293T cells. We further explored the analgesic effects of LCA and LCB on formalin-induced pain animal models. The animal behavior tests revealed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, and LCB can inhibit the pain responses during phase 2. The differences of the effects on NaV currents between LCA and LCB provide us with the basis for developing NaV channel inhibitors, and the novel findings of analgesic effects indicate that licochalcones can be developed into effective analgesic medicines.

SIGNIFICANCE STATEMENT This study found that licochalcone A (LCA) can inhibit voltage-gated sodium (NaV) currents, dampen excitabilities of dorsal root ganglion neurons, and inhibit the NaV1.7 channels exogenously expressed in HEK293T cells. Animal behavior tests showed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, whereas licochalcone B can inhibit the pain responses during phase 2. These findings indicate that licochalcones could be the leading compounds for developing NaV channel inhibitors and effective analgesic medicines.

Footnotes

    • Received November 27, 2022.
    • Accepted June 8, 2023.
  • This work is supported partly by grants from the National Natural Sciences Foundation of China [81373379 and 81641186] and the National Key R and D Program of China [2019YFC1712402] (to S.Y.); the National Natural Sciences Foundation of China [32000685] and Natural Sciences Foundation of Hubei Province [2020CFB348] (to Q.Z.); the Fundamental Research Funds for the Central Universities, South-Central Minzu University [CZZ19005] (to S.Y.) and [CZQ23026] (to Q.Z.); and Knowledge Innovation Program of Wuhan-Shuguang Project [2022020801020412] (to Q.Z.).

  • All authors declare no interest conflicts.

  • ↵1Q.Z., X.Z., and S.L. contributed equally to this work.

  • dx.doi.org/10.1124/molpharm.122.000658.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 104 (4)
Molecular Pharmacology
Vol. 104, Issue 4
1 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Licochalcone Mediates the Pain Relief by Targeting the Voltage-Gated Sodium Channel
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Analgesic Effects and Mechanisms of Licochalcones

Qianru Zhao, Xu Zhang, Siru Long, Shaobing Wang, Hui Yu, Yongsheng Zhou, Yi Li, Lu Xue, Yan Hu and Shijin Yin
Molecular Pharmacology October 1, 2023, 104 (4) 133-143; DOI: https://doi.org/10.1124/molpharm.122.000658

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Analgesic Effects and Mechanisms of Licochalcones

Qianru Zhao, Xu Zhang, Siru Long, Shaobing Wang, Hui Yu, Yongsheng Zhou, Yi Li, Lu Xue, Yan Hu and Shijin Yin
Molecular Pharmacology October 1, 2023, 104 (4) 133-143; DOI: https://doi.org/10.1124/molpharm.122.000658
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics