Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Induced Fit Describes Ligand Binding to Membrane-Associated Cytochrome P450 3A4

David Tyler Sweeney, Francisco Zárate-Pérez, Kamila Stokowa-Sołtys and John C. Hackett
Molecular Pharmacology October 2023, 104 (4) 154-163; DOI: https://doi.org/10.1124/molpharm.123.000698
David Tyler Sweeney
Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francisco Zárate-Pérez
Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Francisco Zárate-Pérez
Kamila Stokowa-Sołtys
Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kamila Stokowa-Sołtys
John C. Hackett
Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John C. Hackett
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Cytochrome P450 3A4 (CYP3A4) is the dominant P450 involved in human xenobiotic metabolism. Competition for CYP3A4 therefore underlies several adverse drug–drug interactions. Despite its clinical significance, the mechanisms CYP3A4 uses to bind diverse ligands remain poorly understood. Highly monodisperse CYP3A4 embedded in anionic lipoprotein nanodiscs containing an equal mixture of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) were used to determine which of the limiting kinetic schemes that include protein conformational change, conformational selection (CS) or induced fit (IF), best described the binding of four known irreversible inhibitors. Azamulin, retapamulin, pleuromutilin, and mibrefadil binding to CYP3A4 nanodiscs conformed to a single-site binding model. Exponential fits of stopped-flow UV-visible absorption spectroscopy data supported multiple-step binding mechanisms. Trends in the rates of relaxation to equilibrium with increasing ligand concentrations were ambiguous as to whether IF or CS was involved; however, global fitting and consideration of the rate constants favored an IF mechanism. In the case of mibrefadil, a transient complex was observed in the stopped-flow UV-visible experiment, definitively assigning the presence of IF in ligand binding. While these studies only consider a small region of CYP3A4’s vast ligand space, they provide kinetic evidence that CYP3A4 can use an IF mechanism.

SIGNIFICANCE STATEMENT CYP3A4 is capable of oxidizing numerous xenobiotics, including many drugs. Such promiscuity could not be achieved without conformational changes to accommodate diverse substrates. It is unknown whether conformational heterogeneity is present before (conformational selection) or after (induced fit) ligand binding. Stopped-flow measurements of suicide inhibitors binding to nanodisc-embedded CYP3A4 combined with sophisticated numerical analyses support that induced fit better describes ligand binding to this important enzyme.

Footnotes

    • Received March 14, 2023.
    • Accepted July 20, 2023.
  • This work was supported by National Institutes of Health National Institute of General Medical Sciences [Grant R01GM135414]. The Research Excellence Initiative at the University of Wrocław supported K.S.S. while in the Hackett laboratory. This work was also conducted at the Advanced Light Source (ALS), a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the Department of Energy, Office of Basic Energy Sciences, through the Integrated Diffraction Analysis Technologies (IDAT) program, supported by DOE Office of Biological and Environmental Research. Additional support comes from National Institutes of Health project ALS-ENABLE [Grant P30GM124169] and a High-End Instrumentation Grant [Grant S10OD018483].

  • No author has an actual or perceived conflict of interest with the contents of this article.

  • dx.doi.org/10.1124/molpharm.123.000698.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 104 (4)
Molecular Pharmacology
Vol. 104, Issue 4
1 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Induced Fit Describes Ligand Binding to Membrane-Associated Cytochrome P450 3A4
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Induced Fit Ligand Binding to CYP3A4

David Tyler Sweeney, Francisco Zárate-Pérez, Kamila Stokowa-Sołtys and John C. Hackett
Molecular Pharmacology October 1, 2023, 104 (4) 154-163; DOI: https://doi.org/10.1124/molpharm.123.000698

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Induced Fit Ligand Binding to CYP3A4

David Tyler Sweeney, Francisco Zárate-Pérez, Kamila Stokowa-Sołtys and John C. Hackett
Molecular Pharmacology October 1, 2023, 104 (4) 154-163; DOI: https://doi.org/10.1124/molpharm.123.000698
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Data Availability
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics