Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Targeting Cyclophilin A and CD147 to Inhibit Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and SARS-CoV-2–Induced Inflammation

Fan Yang, Chenglong Liu, Pengyuan Li, Aihua Wu, Yue Ma-Lauer, Hao Zhang, Zhuang Su, Wei Lu, Albrecht von Brunn and Di Zhu
Molecular Pharmacology December 2023, 104 (6) 239-254; DOI: https://doi.org/10.1124/molpharm.122.000587
Fan Yang
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenglong Liu
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chenglong Liu
Pengyuan Li
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aihua Wu
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yue Ma-Lauer
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hao Zhang
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhuang Su
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei Lu
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Albrecht von Brunn
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Di Zhu
Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Identification and development of effective therapeutics for coronavirus disease 2019 (COVID-19) are still urgently needed. The CD147-spike interaction is involved in the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 invasion process in addition to angiotensin-converting enzyme 2 (ACE2). Cyclophilin A (CyPA), the extracellular ligand of CD147, has been found to play a role in the infection and replication of coronaviruses. In this study, our results show that CyPA inhibitors such as cyclosporine A (CsA) and STG-175 can suppress the intracellular replication of SARS-CoV-2 by inhibiting the binding of CyPA to the SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD), and the IC50 is 0.23 μM and 0.17 μM, respectively. Due to high homology, CsA also had inhibitory effects on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), and the IC50 is 3.2 μM and 2.8 μM, respectively. Finally, we generated a formulation of phosphatidylserine (PS)-liposome-CsA for pulmonary drug delivery. These findings provide a scientific basis for identifying CyPA as a potential drug target for the treatment of COVID-19 as well as for the development of broad-spectrum inhibitors for coronavirus via targeting CyPA. Highlights: 1) SARS-CoV-2 infects cells via the binding of its S protein and CD147; 2) binding of SARS-CoV-2 N protein and CyPA is essential for viral replication; 3) CD147 and CyPA are potential therapeutic targets for SARS-CoV-2; and 4) CsA is a potential therapeutic strategy by interrupting CD147/CyPA interactions.

SIGNIFICANCE STATEMENT New severe acute respiratory syndrome coronavirus (SARS-CoV)-2 variants and other pathogenic coronaviruses (CoVs) are continually emerging, and new broad-spectrum anti-CoV therapy is urgently needed. We found that binding sites of cyclophilin A/cyclosporin A (CyPA/CsA) overlap with CyPA/N-CTD (nucleocapsid C-terminal domain), which shows the potential to target CyPA during SARS-CoV-2 infection. Here, we provide new evidence for targeting CyPA in the treatment of coronavirus disease 2019 (COVID-19) as well as the potential of developing CyPA inhibitors for broad-spectrum inhibition of CoVs.

Footnotes

    • Received July 6, 2023.
    • Accepted July 13, 2023.
  • This study was supported by projects on the Science and Technology Commission of Shanghai Municipality [Grant 18ZR1403900] and [Grant 20430713600] (to D.Z.), the National Natural Science Foundation of China [Grant 81872895] and [Grant 82073881] (to D.Z.), and Shandong Jinan Innovation Team Project [Grant 2020GXRC041]. The animal study was reviewed and approved by the Ethics Committee of the School of Pharmacy, Fudan University.

  • The authors declare that they have no conflicts of interest with the contents of this article.

  • ↵1F.Y., C.L., P.L., and A.W. contributed equally to this study.

  • dx.doi.org/10.1124/molpharm.122.000587.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2023 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 104 (6)
Molecular Pharmacology
Vol. 104, Issue 6
1 Dec 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Targeting Cyclophilin A and CD147 to Inhibit Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and SARS-CoV-2–Induced Inflammation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Targeting CyPA/CD147 To Inhibit Replication of SARS-CoV-2

Fan Yang, Chenglong Liu, Pengyuan Li, Aihua Wu, Yue Ma-Lauer, Hao Zhang, Zhuang Su, Wei Lu, Albrecht von Brunn and Di Zhu
Molecular Pharmacology December 1, 2023, 104 (6) 239-254; DOI: https://doi.org/10.1124/molpharm.122.000587

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Targeting CyPA/CD147 To Inhibit Replication of SARS-CoV-2

Fan Yang, Chenglong Liu, Pengyuan Li, Aihua Wu, Yue Ma-Lauer, Hao Zhang, Zhuang Su, Wei Lu, Albrecht von Brunn and Di Zhu
Molecular Pharmacology December 1, 2023, 104 (6) 239-254; DOI: https://doi.org/10.1124/molpharm.122.000587
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Plasmids and Transfection
    • Bimolecular Fluorescence Complementation
    • Construction of Evolutionary Trees and Extraction of Virus-Host Protein Interactions
    • Inhibition of SARS-CoV-2 Replication In Vitro
    • Viral RNA Extraction and Quantitative Real-Time PCR
    • AlphaScreen Assay of CD147/CyPA
    • Preparation of Phosphatidylserine-Liposome-CsA
    • In Vivo Distribution of Phosphatidylserine-Liposome-CsA
    • Statistical Analysis
    • Results
    • Discussion
    • Data Availability
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Antimicrobial and Antileukemic Transportan 10 Conjugates
  • Pharmacological characterization of zebrafish H1 receptor
  • Bhave and Forman
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics