Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Interaction of Metronidazole with Nucleic Acids in Vitro

NICHOLAS F. LARUSSO, MARIA TOMASZ, MIKLÓS MÜLLER and ROSELYN LIPMAN
Molecular Pharmacology September 1977, 13 (5) 872-882;
NICHOLAS F. LARUSSO
The Rockefeller University, New York, New York 10021 and Department of Chemistry, Hunter College of the City University of New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MARIA TOMASZ
The Rockefeller University, New York, New York 10021 and Department of Chemistry, Hunter College of the City University of New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MIKLÓS MÜLLER
The Rockefeller University, New York, New York 10021 and Department of Chemistry, Hunter College of the City University of New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROSELYN LIPMAN
The Rockefeller University, New York, New York 10021 and Department of Chemistry, Hunter College of the City University of New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The binding of metronidazole [1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole] to nucleic acids was quantitated and characterized in vitro. [14C]Metronidazole was incubated with nucleic acid under various conditions, the nucleic acid and associated 14C were separated from lower molecular weight compounds by molecular sieve chromatography, and nucleic acid concentration and radioactivity were measured in the eluate. Maximum binding occurred when metronidazole was reduced by sodium dithionite in the presence of calf thymus DNA (0.73 molecule of drug per 103 nucleotides). Binding was significantly less if metronidazole was reduced prior to incubation with DNA, and did not occur with unreduced metronidazole. Binding of reductively activated metronidazole to bacterial and phage DNA and yeast tRNA was also demonstrated; it was 2 times greater to alkali-denatured than to native DNA, was less in the presence of MgCl2 or NaH2PO4 and at higher pH, and did not affect the melting temperature or renaturation profile of calf thymus DNA. While 15-30% of bound 14C was released by dialysis or rechromatography, the majority of the label remained complexed to nucleic acid under a variety of conditions known to dissociate noncovalent complexes. Studies with synthetic polynucleotides suggested binding specificity of reductively activated metronidazole for guanine and cytosine. Both unreduced and dithionite-reduced metronidazole bound to bovine serum albumin, and binding of the reduced drug was approximately 35% of binding to nucleic acids. The results indicate that reduction of metronidazole in vitro yields a short-lived, activated compound(s) which, while not cross-linking, binds largely in a covalent fashion primarily to guanine and cytosine of mammalian, bacterial, and phage DNA. This binding may have implications for the antimicrobial, mutagenic, and radiosensitizing actions of this drug.

ACKNOWLEDGMENTS The authors acknowledge helpful discussions with and suggestions by Christian de Duve and Donald Lindmark. The authors also thank James Opperman (Skokie, Il.) for reviewing the manuscript.

  • Copyright © 1977 by Academic Press, Inc.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 13, Issue 5
1 Sep 1977
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interaction of Metronidazole with Nucleic Acids in Vitro
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Interaction of Metronidazole with Nucleic Acids in Vitro

NICHOLAS F. LARUSSO, MARIA TOMASZ, MIKLÓS MÜLLER and ROSELYN LIPMAN
Molecular Pharmacology September 1, 1977, 13 (5) 872-882;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Interaction of Metronidazole with Nucleic Acids in Vitro

NICHOLAS F. LARUSSO, MARIA TOMASZ, MIKLÓS MÜLLER and ROSELYN LIPMAN
Molecular Pharmacology September 1, 1977, 13 (5) 872-882;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Antimicrobial and Antileukemic Transportan 10 Conjugates
  • Pharmacological characterization of zebrafish H1 receptor
  • Bhave and Forman
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics