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SUMMARY

HANCOCK, ARTHUR A., ANDRE L. DELEAN, AND ROBERT J. LEFKOWITZ: Quantitative

resolution of beta-adrenergic receptor subtypes by selective ligand binding: Appli-
cation of a computerized model fitting technique. Mol. Pharmacol. 16,
1-9 (1979).

Frog myocardium appears to possess both beta1 and beta2 receptors, based on the potency
order of several adrenergic agonists to compete for [3H]dihydroalprenolol binding. Selec-
tive beta blocking agents are able to distinguish two receptor subtypes in frog myocardium,
but only one site in rat ventricle. Computer modeling using a PDP 11/45 indicates that
all rat beta receptors are beta1, whereas only 15%-25% of frog ventricular beta receptors
are of the beta1 subtype. Computerized curve fitting can provide a more accurate estimate
of receptor parameters than currently available graphical methods of analysis.

INTRODUCTION

The use of radiolabeled ligands has facil-
itated the study of various properties of the
beta-adrenergic receptors in many tissues
(1). One of the characteristics of beta recep-

tors investigated by this method has been

the distinction between beta1 and beta2 re-
ceptors originally proposed from physiolog-
ical observations by Lands et al. (2). For
example, the adenylate cyclase-coupled
beta-adrenergic receptor of the frog eryth-
rocyte appears to possess binding proper-
ties of the beta2 type (3), whereas the rat
heart demonstrates binding affinities for
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ligands predicted for beta1 receptors (4).
Until recently, it has been believed that

individual tissues contain only one of the
beta receptor subtypes. However, pharma-
cological studies by Caisson et al. (5) dem-

onstrated a mixture of beta1 and beta2 re-
ceptors in kitten, but not rat heart. Similar
physiological techniques have indicated

that frog myocardium might contain a
small beta1 component in addition to a pre-

dominant population of beta2 receptors (6).
Using radiolabeled ligand techniques, Bar-
nett et al. (7) recently demonstrated a mix-
ture of 25% beta1 and 75% beta2 receptors

in rat lung, but rat heart studies demon-
strated only one class of sites. A graphical
method derived from the classical Scat-

chard data analysis (“pseudo-Scatchard”)
was used to estimate the relative propor-
tions of receptor subtypes in these ligand

binding experiments.
In the present study, we have applied a
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In the present application, for each curve

the number “m” of ligands is two, ligand 1
being the labeled ligand (DHA) and ligand
2 being the competitor. The number “n” of

classes of binding sites is set to either 1 or
2, but could be larger. A Scatchard trans-

formation of data (not shown) from satu-
ration studies resulted in a straight line,
indicative of high affinity binding of DHA

with equal affinity for all receptors. Sec-
ondly, in the presence of a competitive
ligand (e.g., propranolol) there was an ap-
parent decrease in the affinity of DHA for
the receptors without any change in the
maximum amount of DHA bound, as pre-

dicted for true competitive binding. DHA

appears to be non-selective for either beta1
or beta2 receptor subtypes and the same
value was assigned to its two affinity con-

stants, K11 and K12, for sites 1 and 2, respec-

tively.
The deviations of the observed points

from the predicted values were weighted

according to the reciprocal of the predicted
variance (13).� The data were repeatedly fit

using the model for one, two, or more
classes of binding sites. The model provid-
ing the best fit was chosen on the basis of

the lowest value of mean squares of resid-
uals. The computer programs provided the
best estimates (with their standard error)

for the affinity constants of each ligand and
the concentration of receptors in each sub-

type. All computations were performed us-
ing an interactive program in PL/1 using a
PDP 11/45.�

RESULTS

Binding of DHA to membrane vesicles
from both frog and rat ventricle demon-
strated appropriate stereoselectivity and a
high affinity for DHA. The KD’s obtained

from Scatchad analysis (data not shown)
were 3.6 ni�i and 2.6 ri� in the frog and rat,

respectively. The reciprocal of the KD’s

were utilized as the affinity constants of

DHA in subsequent computer analyses.
The maximum number of binding sites for

Documentation of the derivation of the variance

function will be provided by the authors upon request.

A listing of the computer programs employed will

be provided by the authors upon request.

DHA was approximately 100 fmnole/mg pro-

tein in frog ventricle and 35 fmole/mg pro-
tein in the rat.

Displacement curves of agonist competi-

tion against approximately 3 n� DHA re-
vealed a different pattern for the two spe-

cies. Figure 1 illustrates the ability of four
adrenergic agonists to compete for DHA

binding in the frog ventricle. The pattern

observed is similar to that found with beta2
systems such as the frog erythrocyte (3).

Estimates of the EC50’s from dose response
curves indicated a potency ratio for hydrox-
ybenzylisoproterenol : isoproterenol: epi-
nephrine:norepinephrine of 1200:70:7.7:1.

By contrast the pattern observed in the rat
ventricle was as expected for betai receptor
binding (Fig. 2), i.e., the relative agonist
potencies of hydroxybenzylisoproterenol:
isoproterenol:epinephrine:norepinephrine
were 30:25:1.7:1.

The ability of three beta-blocking agents

to compete for DHA binding to membrane

vesicles was also different in the two spe-

cies. Figure 3 illustrates dose-response com-
petition curves for approximately 3 nM
DHA binding in frog ventricle. The potency

order of propranolol:butoxamine:practolol
was 2000:6.7:1. In the rat myocardium, bu-
toxamine and practolol were approximately
equipotent, and approximately 1000 fold
weaker than propranolol (Fig. 4).

In the experiments using rat heart the

three antagonist dose-response curves ap-
peared to differ only in the potency of the
competitors, i.e., all three curves were par-

allel (Fig. 4). In the frog heart, however, the
displacement of DHA by butoxamine and
practolol is more complex than that ob-
tained with propranolol. Dose response
curves (Fig. 3) indicate a second component
with butoxamine and practolol. In order to

analyze the interaction of beta-receptor
agents with DHA binding sites a computer
modeling system was developed. Figures 1
through 4 illustrate the ability of the model

to fit the experimental observations. The
lines indicate the best fit from the computer
model, whereas the symbols represent the
actual data points. Predicted values for
ligand affinities and proportions of beta1

and beta2 receptors obtained from agonist

and antagonist competition curves are
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FIG. 1. Competition curves for specific DHA binding to frog ventricular membranes by beta-adrenergic

agonists

The ordinate indicates the percent of maximal specific DHA binding, 0.0221 nM. (Specific binding is defined

as the difference between binding in the absence of any competing ligand and binding in the presence of 10� M

propranolol.) The abscissa is the molar concentration of various agonists. The lines are computer modeled best

fits. The symbols indicate the means of actual data points for 2 (hydroxybenzylisoproterenol, #{149}),11 (isoproter-

enol, U), 9 (epinephrine, A), and 10 (norepinephrine, #{149})separate experiments with each agonist.
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FIG. 2. Competition curves for specific DHA binding to rat ventricular membranes by beta-adrenergic

agonists

The ordinate indicates the percent of maximal specific DHA binding, 0.0083 nM. The abscissa is the molar

concentration of various agonists. The symbols indicate the means of actual data points derived from two

separate experiments with each agonist (hydroxybenzylisoproterenol, #{149},isoproterenol, U, epinephrine, A,

norepinephrine, #{149}).

given in Tables 1 and 2.
The experimental data obtained in the

frog ventricle were best fit with a model in
which 15%-25% of the receptors are beta1

and 75%-85% are beta2. The relative affin-

ities of the antagonists for these receptor
types and the standard error of the mean
of these estimates were also derived by the
program (Table 1). Propranolol had equal

affinity for both beta1 and beta2 receptors,
whereas practolol and butoxamine had aS-
finities for the two frog receptor subtypes
that differed by nearly two orders of mag-
nitude.

In contrast, data obtained in the rat could
be fit most optimally by a model with only
one binding site for both DHA and the
competitor. Table 1 lists the dissociation
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FIG. 3. Competition curves for specific DHA binding to frog ventricular membranes by beta-adrenergic

antagonists

The ordinate indicates the percent of maximal specific DHA binding, 0.0239 nM. The abscissa is the molar

concentration of various antagonists. The symbols indicate the means of actual data points for 3 (butoxamine,

A) to 6 (propranolol,#{149}, practolol, U) separate experiments with each antagonist.
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constants of the three antagonists for the

apparently homogeneous betai receptors in
the rat ventricle.

Agonist competition curves (Figs. 1 and
2) for both frog and rat heart data were fit

with a model involving at least two appar-
ent classes of binding sites. Table 2 lists the
relative proportions and dissociation con-
stants of agonists for receptor subtypes.
Also included in Table 2 are the agonist

potency ratios for the beta receptor sub-

types. A small fraction of frog beta recep-
tors appears to possess the potency order

expected of beta1 sites, whereas in the re-
mainder, hydroxybenzylisoproterenol, a po-
tent beta2-selective agonist, is 28-fold more

potent than isoproterenol, and epinephrine
is 15-fold more potent than norepinephrine,
as expected for beta2 receptors. Two classes
of beta receptors were apparent in rat heart

experiments, both having similar potency

orders for agonists, conforming to beta1 ex-
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FIG. 4. Competition curves for specific DHA binding to rat ventricular membranes by beta-adrenergic

antagonists

The ordinate indicates the percent of maximal specific DHA binding, 0.0186 nM. The abscissa is the molar

concentration of various antagonists. The symbols indicate the means of actual data points for two separate

experiments with each antagonist (propranolol,#{149}, butoxamine, A, and practolol, U).




