Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Bromobenzene Metabolism in the Rabbit

Specific Forms of Cytochrome P-450 Involved in 2,3- and 3,4-Epoxidation

SERRINE S. LAU and VINCENT G. ZANNONI
Molecular Pharmacology July 1981, 20 (1) 234-235;
SERRINE S. LAU
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VINCENT G. ZANNONI
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies in our laboratory indicated that phenobarbital treatment of rats caused a significant increase in both 2,3- and 3,4-epoxidation of bromobenzene in their hepatic microsomes and that 3-methylcholanthrene or β-naphthoflavone caused a selective increase in the 2,3-epoxidation pathway. Sodium dodecyl sulfate, polyacrylamide gel electrophoresis of microsomes revealed multiple forms of cytochrome P-450, in keeping with the notion that different species of the heme protein catalyzed the "nontoxic" 2,3-epoxidation and the "toxic" 3,4-epoxidation of this environmental chemical. The present study describes the metabolism of bromobenzene with highly purified cytochrome P-450 and P-448 isolated from rabbit hepatic microsomal preparations. This study involved the enzymatic conversion of bromobenzene to o-bromophenol via 2,3-epoxidation and p-bromophenol via 3,4-epoxidation in a reconstituted mixed-function oxygenase system. Evidence is presented that purified rabbit cytochrome P-450 (LM2) prepared from animals treated with phenobarbital specifically catalyzes the 3,4-epoxidation of bromobenzene to p-bromophenol. Furthermore, evidence is given that purified rabbit cytochrome P-448 (LM4) prepared from animals treated with β-naphthoflavone specifically catalyzes the 2,3-epoxidation of bromobenzene to o-bromophenol. These data represent an interesting example of two epoxidation pathways involved in the metabolism of a common substrate, one of which leads to cellular damage, i.e., phenobarbital-inducible 3,4-epoxidation; the other, i.e., β-naphthoflavone-inducible 2,3-epoxidation of bromobenzene, is not particularly detrimental. Each epoxidation pathway preferentially requires a different and specific form of the heme protein.

ACKNOWLEDGMENTS The authors wish to thank Dr. Minor J. Coon, Mr. L. Gorsky, Mr. L. Cooke, and Ms. S. Pawlowski of the Department of Biochemistry, University of Michigan, for their generous gift of purified rabbit cytochrome P-450 LM2 and LM4, NADPH-cytochrome c reductase, and dilauroylglyceryl-3-phosphorylcholine.

  • Copyright © 1981 by The American Society for Pharmacology and Experimental Therapeutics

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 20, Issue 1
1 Jul 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bromobenzene Metabolism in the Rabbit
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Bromobenzene Metabolism in the Rabbit

SERRINE S. LAU and VINCENT G. ZANNONI
Molecular Pharmacology July 1, 1981, 20 (1) 234-235;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Bromobenzene Metabolism in the Rabbit

SERRINE S. LAU and VINCENT G. ZANNONI
Molecular Pharmacology July 1, 1981, 20 (1) 234-235;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Michaelis Menten quantification of GPCR-G protein signalling
  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics