Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Ca2+-Dependent Regulation of Rat Caudate Nucleus Adenylate Cyclase and Effects on the Response to Dopamine

MICHAEL T. PIASCIK, MARY F. PIASCIK, ROBERT J. HITZEMANN and JAMES D. POTTER
Molecular Pharmacology September 1981, 20 (2) 319-325;
MICHAEL T. PIASCIK
Department of Pharmacology and Cell Biophysics and Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MARY F. PIASCIK
Department of Pharmacology and Cell Biophysics and Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT J. HITZEMANN
Department of Pharmacology and Cell Biophysics and Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JAMES D. POTTER
Department of Pharmacology and Cell Biophysics and Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The Ca2+ dependence of rat caudate nucleus microsomal adenylate cyclase [ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1] was determined and compared with that of cortical microsomes. Both cyclase preparations exhibited a biphasic response to Ca2+ with no differences in the free Ca2+ concentrations required to stimulate (one-half maximum = 0.19 µM cortex; 0.2 µM caudate) and inhibit (one-half maximum = 1 µM cortex; 0.9 µM caudate) each cyclase system. Whereas the cortical activity was stimulated 7-fold by Ca2+, the caudate activity exhibited only a 2-fold Ca2+-induced enhancement of basal cyclase. This relative insensitivity of caudate adenylate cyclase is not due to the selective loss of calmodulin. Ca2+ concentrations (0.03-0.5 µM) which stimulate the cyclase and the addition of large excesses of calmodulin had no effect on the ED50 of dopamine. The abilities of Ca2+ and dopamine to stimulate caudate adenylate cyclase activity were additive over the concentration range of 0.03-0.5 µM Ca2+·Ca2+ concentrations (>0.5 µM) which inhibit adenylate cyclase activity abolished the stimulatory effect of dopamine. Therefore, it is suggested that Ca2+ and dopamine, in a coordinated manner, can modulate the response of caudate adenylate cyclase.

ACKNOWLEDGMENTS The authors wish to acknowledge the technical assistance of Henry Zot and the helpful supervision of manuscript preparation by Diane Reed, Deborah Turner, and Joyce Zerkle.

  • Copyright © 1981 by The American Society for Pharmacology and Experimental Therapeutics

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 20, Issue 2
1 Sep 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ca2+-Dependent Regulation of Rat Caudate Nucleus Adenylate Cyclase and Effects on the Response to Dopamine
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Ca2+-Dependent Regulation of Rat Caudate Nucleus Adenylate Cyclase and Effects on the Response to Dopamine

MICHAEL T. PIASCIK, MARY F. PIASCIK, ROBERT J. HITZEMANN and JAMES D. POTTER
Molecular Pharmacology September 1, 1981, 20 (2) 319-325;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Ca2+-Dependent Regulation of Rat Caudate Nucleus Adenylate Cyclase and Effects on the Response to Dopamine

MICHAEL T. PIASCIK, MARY F. PIASCIK, ROBERT J. HITZEMANN and JAMES D. POTTER
Molecular Pharmacology September 1, 1981, 20 (2) 319-325;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics