Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol.

J Halpert
Molecular Pharmacology January 1982, 21 (1) 166-172;
J Halpert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The kinetics and reversibility of the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol have been investigated with the use of a reconstituted monooxygenase system purified from liver microsomes of phenobarbital-treated rats. At a ratio of 1 unit of NADPH-cytochrome P-450 reductase per nanomole of cytochrome P-450 and a chloramphenicol concentration of 1 mM, the t1/2 for the inactivation of cytochrome P-450 is less than 2 min. The inactivated cytochrome regains some of its activity upon incubation at 25 degrees or 37 degrees, and experiments with [14C]chloramphenicol show that this partial reactivation is accompanied by the release of some of the 14C originally bound covalently to the cytochrome P-450. Previous work has shown that the 14C-labeled material spontaneously released from 14C-labeled cytochrome P-450 is in the form of oxalic acid, and that the latter is derived from a hydroxylamine-labile adduct of chloramphenicol and cytochrome P-450 [Biochem. Pharmacol. 30:875-881 (1981)]. In the present investigation the 14C-labeled material released by hydroxylamine was identified as the hydroxamic acid of oxalic acid. Trapping experiments with the amino acid cysteine suggest that the adduct, the spontaneous degradation of which appears to be involved in the reactivation of cytochrome P-450, contains an ester rather than a thioester linkage between cytochrome P-450 and a metabolite of chloramphenicol. However, this metabolite may not be identical with chloramphenicol oxamyl chloride, which was the active metabolite implicated in the formation of the 50% covalently bound material which was stable to hydroxylamine treatment.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 21, Issue 1
1 Jan 1982
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol.

J Halpert
Molecular Pharmacology January 1, 1982, 21 (1) 166-172;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol.

J Halpert
Molecular Pharmacology January 1, 1982, 21 (1) 166-172;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics