Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Comparisons of the interaction of propranolol and timolol with model and biological membrane systems.

L Herbette, A M Katz and J M Sturtevant
Molecular Pharmacology September 1983, 24 (2) 259-269;
L Herbette
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A M Katz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Sturtevant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nonspecific interaction of the beta-adrenergic blocking drugs, propranolol and timolol, with model and biological membranes has been investigated. Radioisotope measurements of the association of these drugs with dimyristoyl lecithin (DMPC) bilayers showed that both propranolol and timolol had a significantly greater molar association (mole of drug per mole of lipid) with DMPC above its phase transition temperature than below. Timolol had a much lower molar association with DMPC as compared with propranolol both above and below the phase transition temperature. For the DMPC model membrane system, the molar association of propranolol as measured by radioisotope and inferred from calorimetric studies was similar. Neutron diffraction utilizing propranolol deuterated in the naphthalene moiety showed that the naphthalene moiety of propranolol partitions into the hydrocarbon core of the DMPC lipid bilayer, and that the charged amine side chain is most likely positioned in the aqueous phospholipid head group region. For timolol, the association as measured by radioisotope methods was apparently greater than the partitioning inferred from calorimetric studies using freezing point depression analysis, suggesting a more complex interaction of timolol as compared with propranolol with the DMPC lipid bilayer. The association of propranolol and timolol with sarcoplasmic reticulum vesicles (SR) was similar to that with highly purified protein-depleted SR lipids, and DMPC above its phase transition. The association of propranolol with the SR membrane (mole of propranolol per mole of SR phospholipid) correlated with its ability to inhibit calcium uptake, whereas only a fraction of the total association of timolol with the SR membrane appeared to lead to inhibition of calcium uptake. These results suggest that the major nonspecific interactions of propranolol and timolol are with the SR membrane lipids, and that the magnitude of their interactions depends on both the lipid solubility of the drug and the physical state of the fatty acyl chains of the membrane. Both propranolol and timolol appear to perturb the functional properties of the calcium pump protein in the SR membrane (inhibition of ATP-induced calcium uptake) indirectly by partitioning into the bulk lipid matrix of the SR lipid bilayer, although other sites of interaction cannot be excluded.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 24, Issue 2
1 Sep 1983
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparisons of the interaction of propranolol and timolol with model and biological membrane systems.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Comparisons of the interaction of propranolol and timolol with model and biological membrane systems.

L Herbette, A M Katz and J M Sturtevant
Molecular Pharmacology September 1, 1983, 24 (2) 259-269;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Comparisons of the interaction of propranolol and timolol with model and biological membrane systems.

L Herbette, A M Katz and J M Sturtevant
Molecular Pharmacology September 1, 1983, 24 (2) 259-269;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics